EXTRUDING AND DRAWING MOLYBDENUM TO COMPLEX THIN H-SECTION

Allegheny Ludlum Steel Corporation Research Center

Contract AF 33(657)-11203

RTD Project: 8-112

HARD COPY \$. 4.00
MICROFICHE \$. 0.75

電子の主義の対象は、これの対象に主義の表現の対象に、「地方によってはなって、ここと

Fourth Interim Technical Engineering Report // // 1 May 1964 to 31 July 1964

Sixteen H-shaped extrusions (14 TZM and 2 stainless) were made with new support tooling. No failure or distortion occurred in the tooling, regardless of liner pressure up to 237,000 psi. Reasonable quality and dimensional runout were found in TZM extrusions at a reduction ratio of 43:1 from a 3200F billet temperature with the use of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.

The use of pressed and sintered zirconia nibs was demonstrated successfully for the extrusion of "H" shapes. Dimensional runout for both stainless and TZM was remarkably good and liner pressures were lower than that required for extrusions with segmented, coated dies.

METALLURGICAL PROCESSING BRANCH MANUFACTURING TECHNOLOGY DIVISION AIR FORCE MATERIALS LABORATORY

Research and Technology Division Air Force Systems Command United States Air Force

Wright-Patterson Air Force Base, Ohio

DDC

PEOCULUZ

SEY 2 3 1964

DDC-IRA B

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSI	ON # AD 605614
1.	WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST AVAILABLE COPY.
2.	A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.
 3.	THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION COPIES ARE AVAILABLE IN BLACK—AND—WHITE REPRODUCTION ONLY.
. 🗆 4.	THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO REPRINT.
5 .	LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL BE AVAILABLE IN MICROFICHE ONLY.
□ €.	LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL NOT BE AVAILABLE.
7.	DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.
□ 8.	DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).
9.	
HBS 9/64	PROCESSOR:

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of RTD Technical Reports should not be returned to the AFSC Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This Fourth Interim Technical Engineering Report covers the work performed under Contract AF 33(657)-11203 from T May 1964 to 31 July 1964. It is published for technical information only and does not necessarily represent the recommendations, conclusions or approval of the Air Force.

This contract with the Research Center of the Allegheny Ludlum Steel Corporation, Brackenridge, Pennsylvania, was initiated under RTD Manufacturing Technology Division Project 8-112, "Extruding and Drawing Molybdenum to Complex Thin H-Section." It is administered under the direction of Mr. C. S. Cook of the Metallurgical Processing Branch (MATB), Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

Responsible for the execution of the work and preparation of the report was P. A. Santoli, High Temperature Alloy and Tool Steel Section, Research Center, Allegheny Ludlum Steel Corporation. Other personnel who contributed to the work were F. M. Tansey, F. S. Turner, D. L. Byrne, P. R. Borneman and the staff of the Service Department of the Allegheny Ludlum Research Center.

Written by: P.a. Santoli

Senior Research Metallurgist

PUBLICATION REVIEW

Approved by:

R. K. Fieler

Chief Research Metallurgist

Department Manager

Development and Technical Services Department

ABSTRACT-SUMMARY
Fourth Interim Technical Engineering
Report

RTD Technical Report 8-112 (IV) August 1964

EXTRUDING AND DRAWING MOLYBDENUM TO COMPLEX THIN H-SECTION

Allegheny Ludlum Steel Corporation
Research Center

Sixteen H-shaped extrusions (14 TZM and 2 stainless) were made with new support tooling. No failure or distortion occurred in the tooling, regardless of liner pressure up to 237,000 psi. Reasonable quality and dimensional runout were found in TZM extrusions at a reduction ratio of 43:1 from 3200F billet temperature with the use of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.

The use of pressed and sintered solid zirconia nibs was demonstrated successfully for the extrusion of "H" shapes. Dimensional runout for both stainless and TZM was remarkably good and liner pressures were lower than that required for extrusions with segmented, coated dies.

TABLE OF CONTENTS

<u>Pa</u>	36
INTRODUCTION	1
SUMMARY AND CONCLUSIONS	1
DISCUSSION	2
A. TZM Extrusion Billet Material	2
B. Extrusion Equipment and Procedure	2
1. Extrusion Press	2
2. Billet Heating and Handling	2
3. Die Design and Materials	3
4. Lubrication	3
a. Billet Lubrication	3
b. Die Lubrication	3
c. Liner Lubrication	3
C. Extrusion Data and Die Performance	3
D. Extrusion Evaluation	5
1. Physical Characteristics	5
2. Metallurgical Evaluation	6
3. Mechanical Properties	7
4. Rollability	?
REFERENCES	9
APPENDIX I - The Extrusion of Powder Metallurgy TZM	

to H-Shaped Cross-Section

LIST OF ILLUSTRATIONS

FIGURE	
1	TZM From Heat TZM-7534 Rapidly Heated to 3000F and 3200F in Argon Without Dwell Time at Temperature
2	TZM From Heat TZM-7534 Rapidly Heated to 3400F and 3600F in Argon Without Dwell Time at Temperature
3	TZM From Heat TZM-7534 Rapidly Heated to 3800F and 4000F in Argon Without Dwell Time at Temperature
4	Die Design of 140-Degree Basic Angle (Drawing Number B-0558-1)
5	Die Design of 120-Degree Basic Angle (Drawing Number B-0581-1)
6	Die Design of 100-Degree Basic Angle (Drawing Number B-0653-1)
7	Die Design of 120-Degree Basic Angle and Modified Entry-Radii (Drawing Number B-0655-1)
8	Die Design of 120-Degree Basic Angle and Modified Entry-Radii (Drawing Number B-0658-1)
9	As-Extruded Surface After Sandblasting of TZM Extrusion Number 28
10	As-Extruded Surface After Sandblasting of TZM Extrusion Number 29
11	As-Extruded Surface After Sandblasting of TZM Extrusion Number 30
12	As-Extruded Surface After Sandblasting of TZM Extrusion Number 31
13	As-Extruded Surface After Sandblasting of TZM Extrusion Number 32
14	As-Extruded Surface After Sandblasting of TZM Extrusion Number 33
15	As-Extruded Surface After Sandblasting of TZM Extrusion Number 34
16	As-Extruded Surface After Sandblasting of TZM Extrusion Number 35
17	As-Extruded Surface After Sandblasting of TZM Extrusion Number 36
18	As-Extruded Surface After Sandblasting of TZM Extrusion Number 37
19	As-Extruded Surface After Sandblasting of TZM Extrusion Number 38
20	As-Extruded Surface After Sandblasting of TZM Extrusion Number 39
21	As-Extruded Surface After Sandblasting of TZM Extrusion Number 42
22	Longitudinal Bend Tests - Extrusion Number 22
23	Transverse Bend Tests - Extrusion Number 22

LIST OF ILLUSTRATIONS (Continued)

? :	<u>IGURE</u>	
	24	Longitudinal Bend Tests - Extrusion Number 23
	25	Longitudinal Bend Tests - Extrusion Number 23
	26	Transverse Bend Tests - Extrusion Number 23
	27	Edge Views of 12-Inch Long Full H-Shaped Compression Test Section From Extrusion Number 37 After Testing at Room Temperature
	28	Side Views of 12-Inch Long Full H-Shaped Compression Test Section From Extrusion Number 37 After After Testing at Room Temperature
	29	Two-Inch Long Full H-Shaped Compression Test Section From Extrusion Number 27 After Testing at Room Temperature
	30	Hardness Versus Rolled Size or Percent Reduction for Flange Material From Extrusion Number 23
	31	Transverse Microstructures of Flange Material From Extrusion Number 37 After Rolling With Nominal 10-Percent Reduction Per Pass From Furnace Preheat Temperature of 1200F
	32	Transverse Microstructures of Flange Material From Extrusion Number 37 After Rolling With Nominal 20-Percent Reduction Per Pass From Furnace Preheat Temperature of 1200F
	33	Transverse Microstructures of Flange Material From Extrusion Number 37 After Rolling With Nominal 30-Percent Reduction Per Fass From Furnace Preheat Temperature of 1200F
	34	Transverse Microstructures at the Back Location of Powder Metallurgy TZM H-Shaped Extrusion Number 36 From 2800F Billet Temperature
	35	Transverse Microstructures at the Back Location of Powder Metallurgy TZM H-Shaped Extrusion Number 36 From 2800F Billet Temperature

LIST OF TABLES

TABLE	
1	H-Shaped Dies
2	Extrusion Data
3	Dimensional Runout and Die Performance for Stainless Extrusion Number 27
4	Dimensional Runout and Die Performance for TZM Extrusion Number 28
5	Dimensional Runout and Die Performance for TZM Extrusion Number 29
6	Dimensional Runout and Die Performance for TZM Extrusion Number 30
7	Dimensional Runout and Die Performance for TZM Extrusion Number 31
8	Dimensional Runout and Die Performance for TZM Extrusion Number 32
9	Dimensional Runout and Die Performance for TZM Extrusion Number 33
10	Dimensional Runout and Die Performance for TZM Extrusion Number 34
11	Dimensional Runout and Die Performance for TZM Extrusion Number 35
12	Dimensional Runout and Die Performance for TZM Extrusion Number 36
1.3	Dimensional Runout and Die Performance for TZM Extrusion Number 37
14	Dimensional Runout and Die Performance for TZM Extrusion Number 38
12	Dimensional Runout and Die Performance for TZM Extrusion Number 39
16	Dimensional Runout and Die Performance for TZM Extrusion Number 40
17	Dimensional Runout and Die Performance for Stainless Extrusion Number 41
18	Dimensional Runout and Die Performance for TZM Extrusion Number 42
19	Profilometer Surface Measurements of H-Shaped Extrusions
20	Room Temperature Tensile Tests - As-Extruded H-Shaped Material
21	Bend Tests - Extrusion Number 22
22	Bend Tests - Extrusion Number 23
23	Room Temperature Tensile and Compression Tests - Extrusion Number 37

EXTRUDING AND DRAWING MOLYBDENUM TO COMPLEX THIN H-SECTION

Development of the Extrusion Operation

INTRODUCTION

The purpose of this program is to advance the State-of-the-Art of mo odenum extruding and drawing to produce thin sections of molybdenum in the quality required for various Air Force mission-oriented systems. The measure of satisfactory accomplishment of this process development will be the production of acceptable H-shaped sections as can be circumscribed by a circle of approximately two inches diameter, to a thickness of 0.040-inch and to a length of 20 feet. This program is sponsored by the Aeronautical Systems Division of AFSC.

The program approach has been outlined in two phases:

Phase I - Development of the Extrusion Operation

Phase II - Development of the Drawing Operation

A commercial arc-cast molybdenum-base alloy designated as TZM is being used in this program. This alloy has the following analysis range:

Molybdenum and Weight Percent

Titanium	0.40 - 0.55
Zirconium	0.06 - 0.12
Carbon	0.01 - 0.04

The first H-shaped extrusions of stainless steel and TZM were made during the previous report period and shown in the Third Interim Technical Engineering Report. Support tooling failed severely during these extrusions. New support tooling was made to double die support. This tooling was used during this report period and the results are reported herein.

SUMMARY AND CONCLUSIONS

Sixteen H-shaped extrusions (14 TZM and 2 stainless) were made with new support tooling. No failure or distortion occurred in the tooling, regardless of liner pressure up to 237,000 psi. Reas able quality and dimensional runout were found in TZM extrusions at a reduction ratio of 43:1 from 3200F billet temperature with the use of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.

The use of pressel and sintered solid zirconia nibs was demonstrated successfully for the extrusion of "H" shapes. Dimensional runout for both stainless and TZM was remarkably good and liner pressures were lower than that required for extrusions with segmented, coated dies.

DISCUSSION

A. TZM Extrusion Billet Material

Arc-cast and powder metallurgy billet stock of TZM have been purchased for extrusion billets. Available data from suppliers and evaluation results for these materials were given in previous interim technical engineering reports. (1), (2), (3)

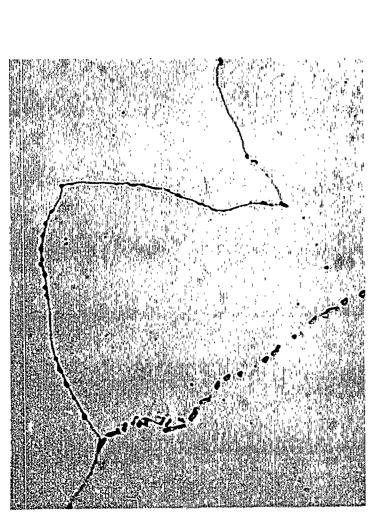
A laboratory investigation is in progress to determine the conditions under which precipitation in TZM can occur by heating and cooling. These results, in turn, will be helpful in understanding the microstructural changes observed in extruded material.

Transverse hollow specimens (3/4-inch OD by 5/8-inch ID by 3/4-inch long) were machined from as-received billet stock from Heat 7534. These specimens were heated rapidly in argon to 3000F, 3200F, 3400F, 3600F, 3800F and 4000F without dwell time at each temperature, followed by rapid cooling by a heavy flow of argon to below 2000F within two minutes.

Figures 1 to 3 show the heat treated microstructures after electropolishing in Disa A-3 solution and electroetching in a solution of 10 percent sodium hydroxide. Figure 2 in the Second Technical Engineering Report⁽²⁾ shows the etched microstructure of Heat TZM-7534 in the as-received recrystallized condition.

The results of microstructural examination showed that changes in the microstructure of TZM occurred by rapidly heating and cooling. It was observed also that a noticeable decrease in the amount of carbide and hardness occurred by raising the temperature from 3000F to 3200F. These changes were also accompanied by spheroidization of the remaining carbides. Whether changes in the microstructure at the higher temperatures resulted from solutioning followed by precipitation has yet to be determined. Previous round extrusions already reported showed similar microstructural changes suggesting heating and cooling rather than deformation as the strong influence on microstructural changes in TZM.

This study of heating and cooling TZM will continue with different dwell times at temperature. Heat treating and forging TZM prior to extrusion into "H" shape will be established on the basis of this study.

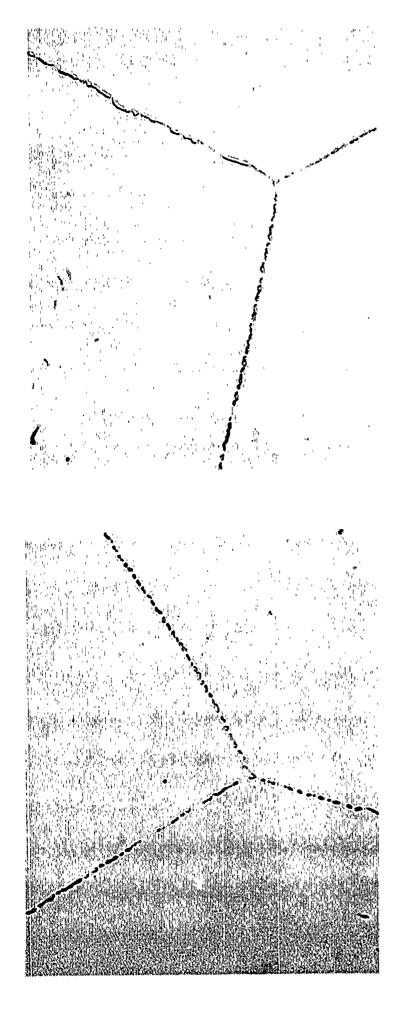

B. Extrusion Equipment and Procedure

1. Extrusion Press

Description of the extrusion press was given in the previous interim technical engineering report.

2. Billet Heating and Handling

Description of billet heating and handling was given in the previous interim technical engineering report. (2)

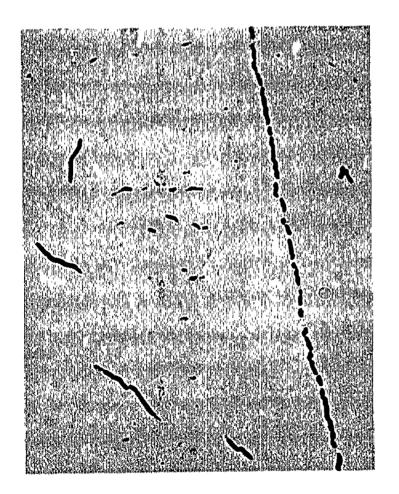

3000F Vickers (10 kg) 194 ASTM Grain Size 5 to ➤

3200F Vickers (10 kg) 176 ASTM Grain Size 3 to > 1

Etchant: 10% NaOH - Electrolytic Magnification: 1500X

TOURE I

TZM From Heat TZN:-7534 Rapidly Heated to 3000F and 3200F in Argon Without Dwell Time at Temperature


3400F Vickers (10 kg) 186 ASTM Grain Size 2 to ≯1

3600F Vickers (10 kg) 185 ASTM Grain Size 2 to > 1

Etchant: 10% NaOH - Electrolytic Magnification: 1500X

FIGURE 2

TZM From Heat TZM-7534 Rapidly Heated to 3400F and 3600F in Argon Without Dwell Time at Temperature

3800F Vickers (10 kg) 191 ASTM Grain Size 1 to >

4000F Vickers (10 kg) 185 ASTM Grain Size > 1

Etchant: 10% NaOH - Electrolytic Magnification: 1500%

FIGURE 3

TZM From Heat TZM-7534 Rapidly Heated to 3860F and 4000F in Argon Without Dwell Time at Temperature

3. Die Design and Materials

H-shaped dies were prepared with flame-sprayed ceramic segments and solid zirconia nibs both of which were assembled in retainer rings. Table 1 is an outline of orifice openings, coating thickness and materials. Die design and typical dies were shown in previous interim technical engineering report. (3) Drawing numbers given in Table 1 pertain to die designs shown in Figures 4 through 8.

4. Lubrication

Proprietary compositions of lubricants as provided under license agreements are designated by code numbers.

Allegheny Ludlum is a licensee of Compagnie du Filage des Metaux et des Joints Curty (Cefilac), formerly known as Comptoir Industriel d' Etirage & Profilage de Metaux, Societe Anonyme, for the use of glass lubricants in extrusion processes and as such, is obliged under the terms of its license agreement to maintain as confidential certain features such as glass compositions and proprietary designs.

a. Billet Lubrication

Glass in powder form of -325 wesh was placed on the "glass" table. Heated billets at extrusion temperature were rolled through the glass and picked up practically all of it. Billet glass composition code numbers are listed in the extrusion data table given later in this report.

b. Die Lubrication

A glass pad was placed between the billet and die for each extrusion. The pad, 4-inch OD by 1/2-inch ID by 1-inch thick, was composed of glass fibers. Die glass composition code numbers are listed in the extrusion data table given later in this report. Die surface was precoated with Moly-Spray-Kote (4).

c. Liner Lubrication

Molykote $G^{(5)}$ was used for lubrication of the liner. This was applied by swabbing the liner ID with a cloth saturated with the lubricant.

C. Extrusion Data and Die Performance

Extrusion data for TZM H-shaped extrusions are given in Table 2. Dimensional checks as a measure of die performance for the extrusions are shown in Tables 3 through 18.

The first H-shaped extrusions were accompanied by support tooling failures. (3) New support tooling was made and used for the extrusions accomplished during this report period. Support tooling failures did not occur during these extrusions except for one spacer that cracked under pressure from foreign matter stuck between it and the die.

TABLE 1

H-Shaped Dies

	•		Retainer	Die Ori	Die Orifice Dimensions	sions	Average	
Die Code No.	Drawing Number	Material (1)	King Material	Opening	r lange Width	Height	Ratio(2)	Description (3)
H-DM25	B-0558-1	Potomac M	Almar 18-300	.058061	1.749	.995	40.8:1	Basic Angle,
H-DM26	B-0558-1	Potomac M	Almar 18-300	.057062	1.750	966.	44.9:1	20° Basic Any =, 1/32 FR
H-DM27	B-0558-1	Potomac M	Potomac M	.061067	1.751	966.	41.1:1	Basic Angle, 1/32
H-DM28	B-0558-1	Potomac M	Potomac M	.070	1.750	666.	38.4:1	20° Basic Angle, 1/32 FR
H-DM29	B-0558-1	Potomac M	Potomac M	.062	1.750	666.	45.6:1	1/16
76MU-H	B-0581-1	Potomac M	Potomac M	.057061	1.750	966.	41.5:1	30° Basic Angle, 1/32 FR
H-DM32(4)	B-0581-1	Potomac M	Potomac M	.059062	1.752	866.	43.5:1	Angle, 1/32
H-E#33	B-0558-1	Almar 18-300	Almar 18-300	.079082	1.774	1.018	34:1	20° Basic Angle. 1/32 FR
H-DM34	B-0558-1	Almar 18-300	Almar 18-300	990790	1.750	966.	41.5:1	20° Basic Angle, 1/32 FR
H-DM35	B-0581-1	Almar 18-300	Almar 18-300	.064065	1.749	966.	41.8:1	30° Basic Angle, 1/32 FR
H-DM36	B-0581-1	Almar 18-300	Almar 18-300	.061067	1.751	866.	40.9:1	Basic Angle, 1/32
H-DM37	B-0658-1	Potomac M	Almar 18-300	.059062	1.752	666.	1:6.45	
H-DM38	B-0658-1	Potomac M	Almar 13-300	.067072	1.763	666.	38.1:1	Basic
H-DM39	3-0655-1	Potomac M	Almar 18-300	.064068	1.753	666.	40.3:1	1/32
H-DM48	B-0583	Zirconia	Almar 18-300	.063068	1.774	1.017	-0.3:1	Basic Angle, 1/32
H-DM49	B-0583	2irconia	Almar 18-300	.062067	1.776	1.018	42.2:1	30° Basic Angle, 1/32 FR
H-DMS0	B-0583	2irconia	Almar 18-300	.067	1.774	1.015	40.3:1	Basic Angle, 1/32
H-DM51	B-0583	Zirconia	Almar 18-300	.057062	1.773	1.017	45.6:1	, 1/32
H-DM52	B-0653-1	Potomac M	Potomac M	.057064	1.753	866.	44.2:1	Sasıc Angle, 1/32
H-DMS3	B-0558-1	Potomac M	Potomac M	.076078	1.749	1.001	34.8:1	20° Basic Angle, 1/32 FR
H-DM54	B-0558-1	Potomac M	Potomac M	.097099	1.747	1.010	19:1	, 1/32

⁽¹⁾ Potomac M and Almar 18-300 with flame-sprayed zirconia in about .035-inch thickness

⁽²⁾ From liner diameter of 3-7/8 inches

⁽³⁾FR = fillet-radius

⁽⁴⁾ Flat entry faces to fillet-radif

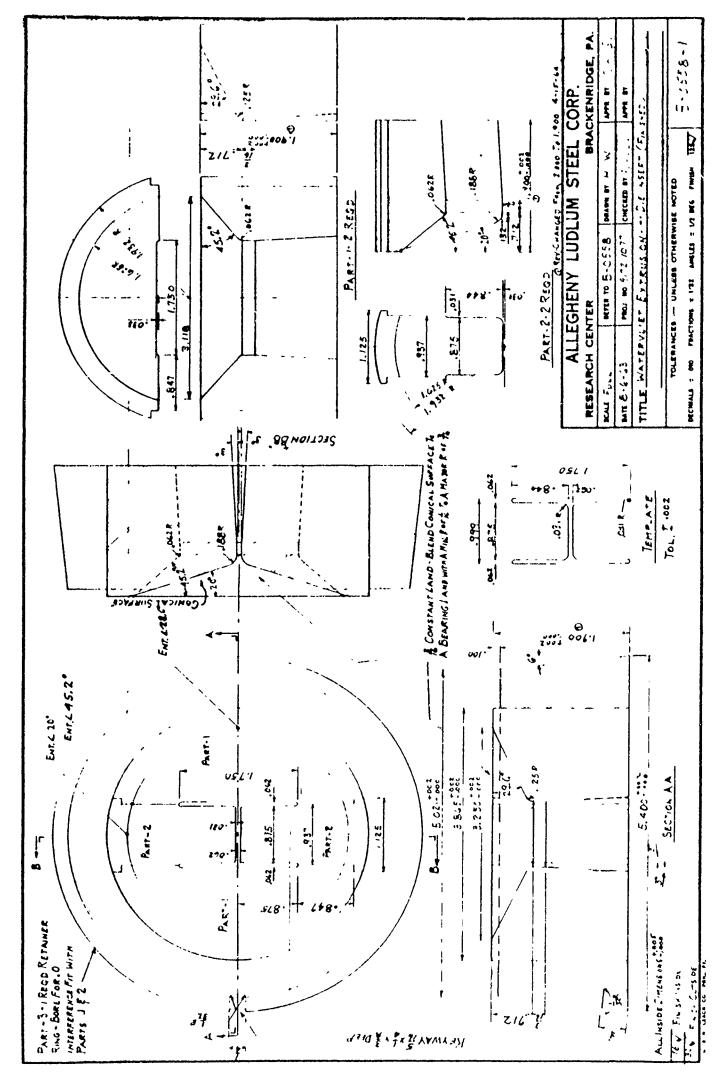


FIGURE 4

Die Design of 140-Degree Basic Angle (Drawing No. B-0558-1)

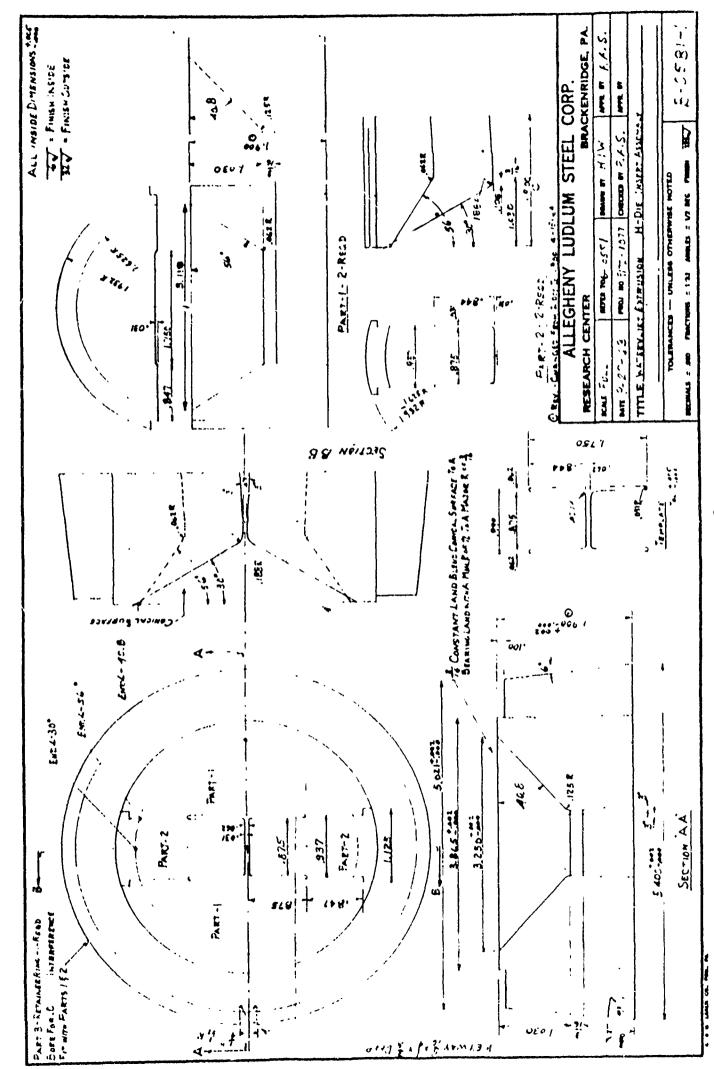


FIGURE 5

Die Design of 120-Degree Basic Angle (Drawing No. B-0581-1)

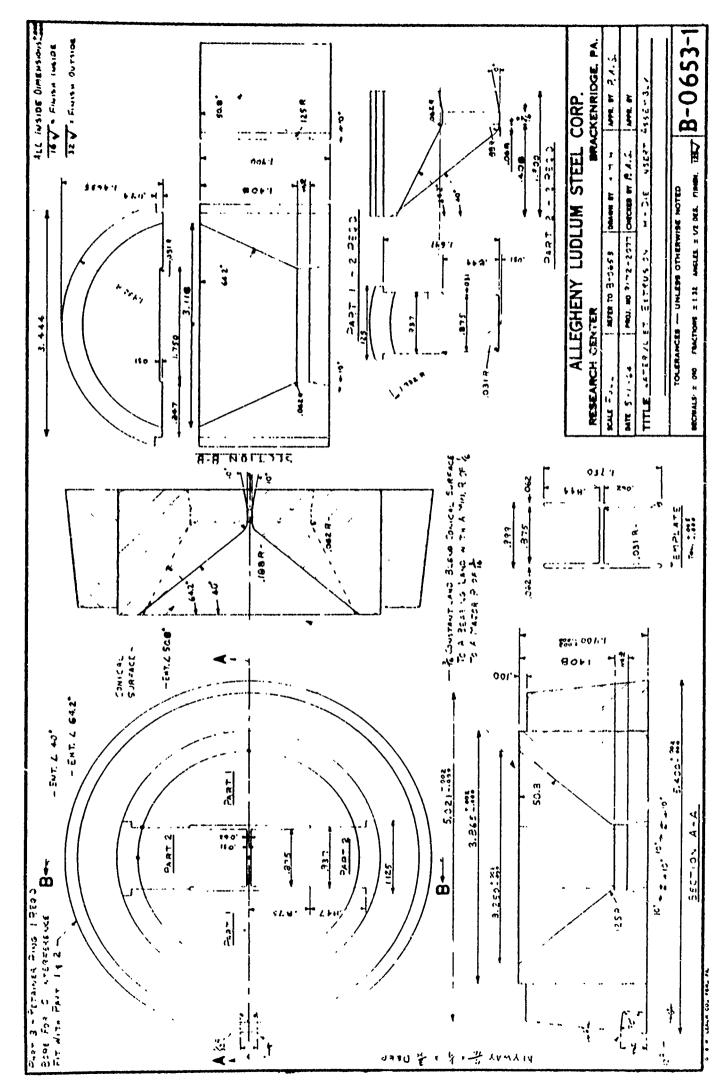
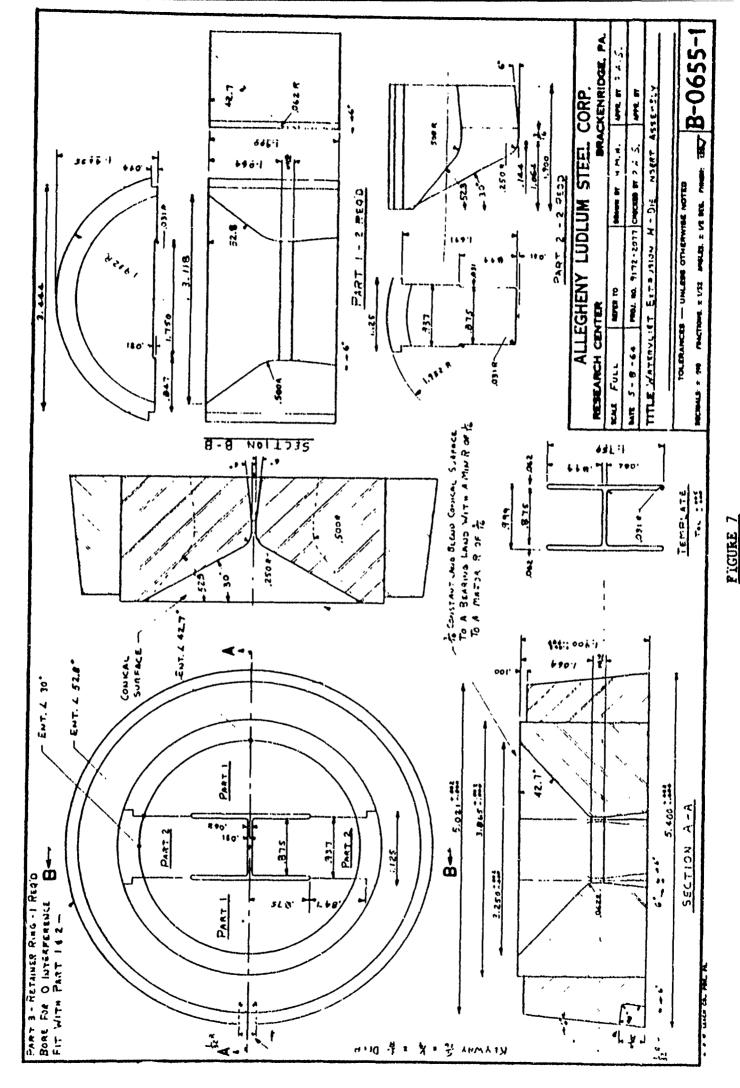



FIGURE 6

Die Design of 100-Degree Basic Angle (Drawing No. B-0653-1)

A TANDAT A

Die Design of 120-Degree Basic Angle and Modified Entry Radii (Drawing No. B-0655-1)

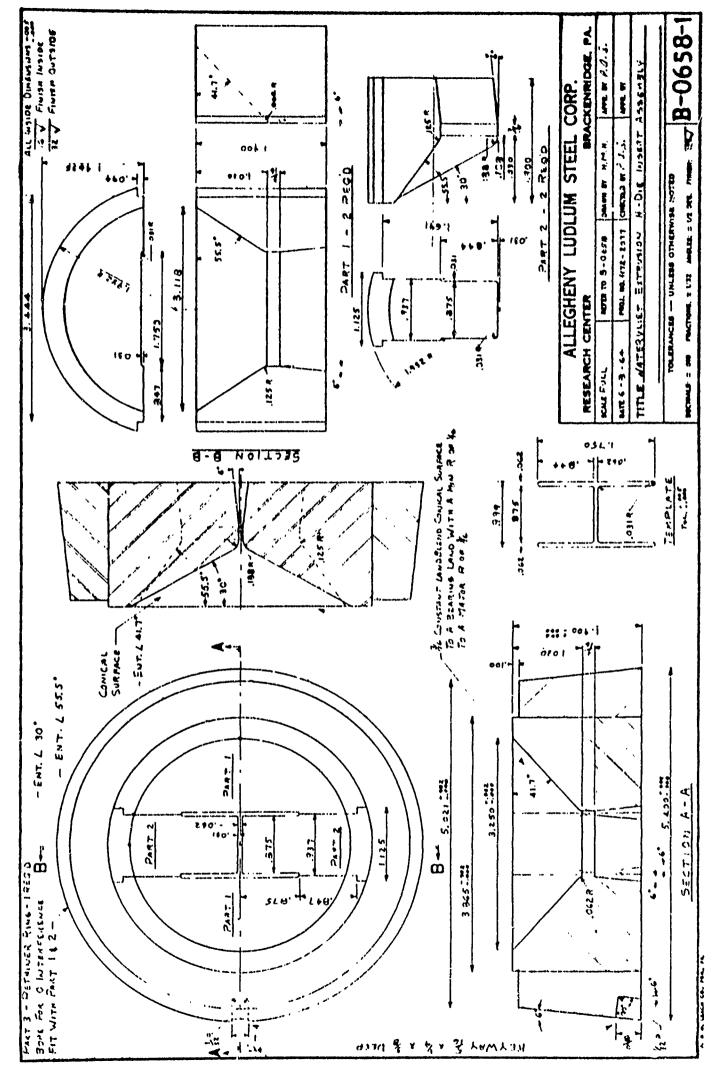


FIGURE 8

Die Design of 120-Degree Basic Angle and Modified Entry Radii (Drawing No. B-0658-1)

TABLE 2 Exervation Data

Extruston	Billet Code		Billet Size(in.)		Biller Heating Temp.	Billet Glass Composition	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Die Glass Composition Code Number	Reduction Pacio	Martiner Liner Presence (ket)	History Liner Pressure (kst)	Maximum Mesistance (g Deformation (ks)	Haimme [9] Deformation (2) (ksi)	Lyarko
Number 27	Number	Number 3-36090 ⁽³⁾	3.725		2120	AL-26-35		AL-19-56	44.9:1	8	124	47.3	32.6	169 inches long, good surface, one edge torm.
28	H-H23	12H-7549-B	3.725	~	3240	AL-44-45	H-0427	AL-H-56	41-1:1	213	9 02	59.0	55.4	119 inches long, light stria- tions, poor corners and fillets.
53	72X-H	12M-7549-B	3.725	~	3220	AL-44-45	H-DH25	35-X-TV	1:8.07	226	8	3	55.5	128 inches long, good fillers, poor corners, glass ruh-tn.
æ	H-M25	124-754-8	3.725	~	3250	NI-44-45	H-0428	AL-4-56	%.4 :1	617	8	50.2	5 6. 5	126 inches long, light stris- tions,fair corners, little glass ruo-in-
ĭ.	ë-326	TZN-7549-8	3.725	v	3228	57-77-78	H-0435	%-#-TV	41.8:1	219	ଛ	7. 1 . 1	×.	100 incnes long, glass rub-in, light striations, fair corners and fillets.
32	728-5	\$ 091-KZI	3.725	9	3150	S7-77-78	90 30-1	95-#-18	1:6.07	214	102	57.6	55	132 inches long, poor surface. Sadly torn edges.
æ	£-%28	¥21-KZI	227	v	3220	AL-44-45	H-DRO9	95-11-77	40.3:1	83	219	6.09	59.2	I76 inches long, glass two-in. good fillets, poor corners.
¥	E-429	65-3	3.725	5.5	3200	AL-30-45	7010- н	AZ-11-34	41.5:1	122	8	61.0	55.4	153 inches long, good surface. poor corners. Ifght glass rub-in
35	8-430	45-4	3.725	5.5	3000	VT-30-45	H-5H32	AL-4-56	43.5:1	tz.	216	50.3	57.2	129 inches long, sood surface and fillats.
36	H-701	45-5	3.725	~	2800	AL-30-45	H-DF29	AL-#-56	45.6:1	123	219	59.5	27.6	108 inches long, good surface. fair corners and fillers.
37	ñ- %32	A-6421-HZT	3.725	1	3200	AL-30-45	H-DN37	AL-11-56	1:6.7:1	\$22	214	7.09	7. %	156 inches long, light stris- cions, fair corrers.
#	H-503	TZM-7549-B	3.72	,	3350	AL-30-45	8CM2-H	AL-#-14	36.1:1	ä	173	62.4	67.5	176 inches long, poor surface
33	H-H34	1724-7608	3.725	•••	3200	AL-30-45	H-GH53	VI-#-56	¥.8:1	m	193	3	¥	203 inches long, poor surface, core adges.
3	H-H35	172H-7608	3.725	•	2800	AL-30-45	H-0403	AL-H-56	ī Ä	;	ł	•	:	Press plocked.
7	:	3-36090 ⁽³⁾	3.725	•	9	AL-26-35	#-Diff.	AL-19-56	40.3:1	3	511	6. 5	31.1	lis inches long, excellent surface, good corbers and fillers.
ä	9Си-н	124-7534	3.725	~	3200	VT-30-45	H-044.9	35-A-TV	42.2:1	8 2	142	**	37.9	108 inches long, poor corners, good fillets, light glass
$^{(1)}_{\mathbf{f}_{\mathbf{r}_i}}$	om Ifner	(1) from liner of 3.875-inch dismeter	1 diameter		(3)	(2)Calculated by P o K in K K	 		- limer presente, psi - resistance to defermation, poi - reduction ratio	elementos elementos		(3) Stainless steel of 306 Grade	il of 306 Grade	

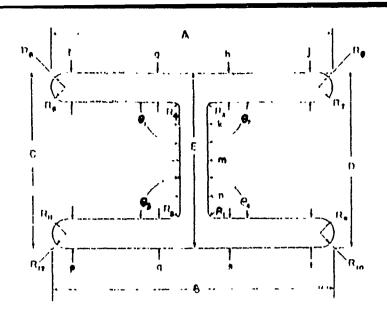


TABLE 3

Dimensional Runout and Die Performance
for Stainless Extrusion No. 27

		EXTRUSION			DIFFER FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.714	1.713	001	1.750	036	037
В	1.684	1.697	+.013	1.750	066	053
C	934	. 946	+.012	996	062	050
D	934	951	+.017	. 996	062	<u>045</u>
E	973	.970	003	.995	022	025
F	060	.055	005	.061	001	006
G	.059	، 058	001	.061	÷.002	003
н	.058	.057	001	.061	003	003
J	.057	.057	0	.061	004	004
K	056	.053	003	.057	001	004
M	.058	.056	002	.057	+.001	001
N N	.057	.053	004	.057	0	004
ૃ	051	.053	+.002	.061	010	008
Q	.059	.058	001	.061	002	003
9	.059	.056	003	.061	002	005
Z	.056	.052	004	.062	006	010
R ₁	.032	.036	+.004	.029	+.003	∻∙007
R ₂	.032	.031	001	.032	0	001
R ₃	.032	.033	+.001	.030	+.002	+.003
R ₄	.029	.032	+.003	.030	001	+.002
R ₅	(1)	.029		.034	(1)	005
R ₆	(1)	(1)		033	(1)	(1)
R ₇	.031	029	002	031	0	
ี ค ₈	(1)	(1)		031	(1)	(1)
R ₉	.032	.031	001	033	001	002
Rio	.043	(1)	<u></u>	.032	+.011	(1)
RII	.032	032	0	,032	0	0_
R ₁₂	040	(1)	***	034	+.006	(1)
0,	87.1	88.7	+.6	90	-2.9	1.3
θ ₂	88.6	90		90	1.4	0
θ3	888	88.1		90	$\frac{-1.2}{-1.8}$	$-\frac{1.9}{1.9}$
θ_4	88.2	89.3	+1.1	90	-1.8	
•	Too Irregular ta	measure				

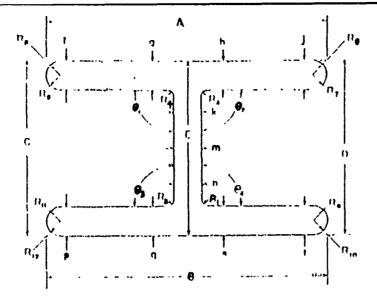


TABLE 4

Dimensional Runout and Die Performance
for TZM Extrusion No. 28

					DIFFER	
		EXTRUSION	······································		FROM	DIE
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.7309	1.7275	0034	_1.750	019	023
В	1.7324	1.7362	+.0038	1.751	019	015
С		9704	0019	984	012	014 029
D	9561	<u>9679</u>	+.0118	.997	041	029
Ε	. 987	1.0052	+.0182	.997	010	+,008
F	.0638	.0613	0025	.066	002	005
G	.0675	.0701	+.0026	066	+.001	+.004
H	.0675	.0708	+.0033	.066	+.001	+.005
J	.0630	.0573	0057	.061	+.002	004
ĸ	.0648	.0800	+.0152	.064	+.001	+.016
M	.0654	.0807	+.0153	.065	0	+.016
N	.0655	.0802	+.0147	.064	+,001	+.016
ρ	.0633	.0610	.0023	,062	+.001	001
Q	.0657	.0722	+.0065	.067	-,001	+.005
3	.0664	.0712	+.0048	,066	0	+.005
Z	.0638	.0520	0118	.066	002	014
R ₁	.029	.077	+.048	,030	001	+.047
R ₂	.031	.073	+.042	.030	+.001	+,043
R ₃	.031	.073	+.042	.032	001	+,041
11.3 R4	.030	.084	+.054	.033	003	+.030
114 R5	.043	NM		.033	+.010	(1)
**5 R ₆	.030	NM		.033	003	(1)
*** R ₇	.036	NM		.033	+.003	(1)
R ₈	.020	NM.		030	010_	(1)
~в R ₉	030	030	0	030	0_	0
RIO	.021	NM		.030	009	(1)
	.036	NM		.035	+.001	<u>(1)</u>
Я _П В ₁₂	.034	NM		.035	001	· (1)
$\theta_{\mathbf{i}}$	89°22'	87°27'	-1°55'	90	6	2.6
02	89°16'	90°	+44'	89,6	3	+.4
	90°	87°50'	-2°10' -2°21'	89.7	+.3	-1.9
θ ₃	89°50'	87°50' 87°29'	-2°21'	89.8	0	-2.3
θ4						

⁽i) Too Irregular to measure

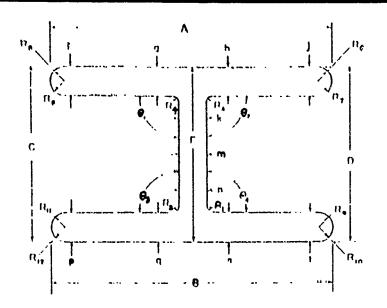


TABLE 5

Dimensional Runout and Die Performance for TZM Extrusion No. 29

		EXTRUSION			DIFFEF FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
	1.728	1.708	020	1.749	021	041
A	1.721	1,726	+.005	1.749	028	023
B C	.959	.,977	+.018	•995	036	018
Ď	.961	.961	0	995	034	034
_	. 983	.993	+.010	.994	011	001
Ε	. 703		1.010	• 5554		
F	057	052		060	003	008_
G	060	061	t.001_	060	0	±.001
H	060	.060	0	.060	0	0
J	057	.041		.060	003	019
K	.058	.062	+.004	.058	0	+.004_
M	.057	.061	+.004	.058	001	+.003
N	.057	.061	+.004	.058	001	+,003
P	058	.061	+.003	061	003	0
Q	.061	.065	+.004	.061	0	+.004
3	.061	.063	+.002	061	0	+.002
Z	.057		+.010	.060	003	013
	.185	.185	0	.186	001	001
R _I	.185	.185	0	.186	<u>001</u>	-,001
R ₂	.182	.180	002	.186	001 004	006
R ₃	.182	• 177	005	.186	004	009
R4	.050	.030	020	.031	+.019	001
R ₅	.030	(1)		.031	001	(1)_
R ₆	.033	(1)		031	+.002	(1)
R ₇	.038	(1)		031	+.007	(1)
Re	.033	.041		031	+.002	+.010
R ₉	(1)	(1)_		031	(1)	(1)
RIO	.040	.019	021	.031	+.007	012
RII	.040	.033	007	.031	+.007	+.002
R ₁₂				<u></u> -	ىرىپىيىسىلىكىكىكىكىلىكىيىسىسىيىسىسىسىسىسىسىسىسىسىسىسىسىسىسىس	
$\boldsymbol{\Theta}_{\mathbf{I}}$	89.4	89.5		90	6	5
02	89.6 89.5	90.7	+1.1	90	4	+.7
θ3	89.5	90.0	+.5	90	5	0
θ4	89.1	89.7	+.6	90	9	3

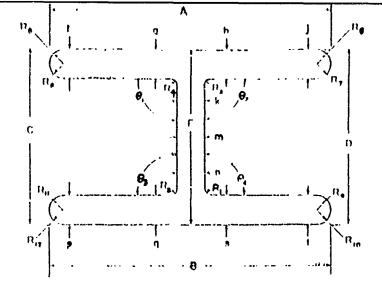


TABLE 6

Dimensional Runout and Die Performance
for TZM Extrusion No. 30

					DIFFEF	RENCE
		EXTRUSION	***************************************		FROM	DIE
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.743	1,743	0			
В	1.742	1.741	001			
C	. 985	.981	-,004			
D	. 987	.982	005			
Ε	.998	1.003	+.005			
_				•		
F	.072	068	,004			
G	.073	.074	+.001			
H	.074	.075	+.001			
J	.072	.066	006			
						<u></u>
ĸ	.071	.073	+.002			
M	.071	.075	+.004			
 N	.071	•075	+.004			
				,		
P	.071	.067	004			
•	.072	.073	+.001			***************************************
3	.072	.075	+,003			
z	.072	.067	005			
•				•	**************************************	
R	.030	100	+.070			
R ₂	.030	.045	+.015			
#3	.030	.034	+.004		•	
"3 R4	.028	046	+.018			
R ₅	.038	.039	+.001			
R ₆	.044	054		***************************************		
nь R ₇	035	(1)				
R _B	041	060	+.019			
∵8 R ₉	.040	.045	+.005			
-	•044	(1)				
R _{IO}	.038	032	006			
RII	034	030	004			•
R ₁₂			,M.M.Z			
А	90.0	89.4	6			
θ ₁	89.6	89.2	4		•	
θ ₂	89.6 89.7	89.1	6	****		
θ ₃	89.6	89.6			***************************************	
θ ₄					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

⁽¹⁾ Too irregular to measure

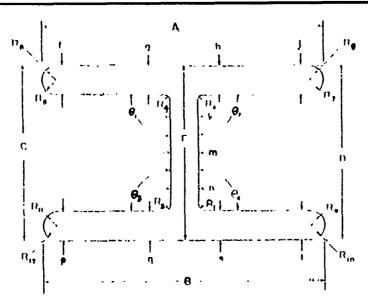


TABLE 7

Dimensional Runout and Die Performance
for TZM Extrusion No. 31

				DIFFERENCE FROM DIE		
		EXTRUSION	0.0000000000000000000000000000000000000			
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.724	1.736	+.012			
8	1.723	1.734	+.011			
C	974	974				
D	973	968	005		····	
E	.986	. 999	+.013			
F	065	061	004			
G	066	071	+_005			
Н	066	072	+.006			
J	063	067	+.004			
K	064	.078	+,014	******		
M	.063	.079	+.016		****	
N	.064	.075	+.011			
P	.063	,068	+.005			• • • • • • • • • • • • • • • • • • •
Q	.065	.070	+.005			
5	.065	.071	+.006			
Z	.063	.064	+.001			
R	.028	.083	+.055			
" R ₂	.030	,053	+.023			
_	.029	.077	+.048			
R ₃	029	.081	+.052			
R ₄	.035	.028	007			
R ₅	038	.040	+.002			
R ₆	.030	.031				
R ₇	023	.060	+.037			
R _B	033	.032	001			
R ₉	024	049	+.025			
RIO	.040	031	009			
RII		.040				
R ₁₂	027	a.W.†W	i.a.bl.And			**************************************
Øį	89.0	89.0	0	On any color and any and the state of the st		Antonia or of one
02	90.2	89.7	,5			
θ3	90.4	89.3 89.0	<u>lal</u>			
84	89.8	09.0	8			

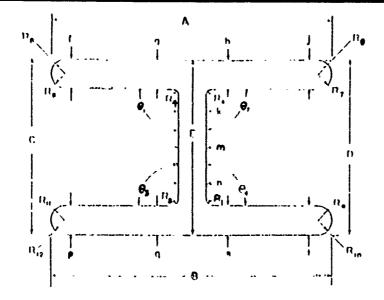


TABLE 8

Dimensional Runout and Die Performance
for TZM Extrusion No. 32

					DIFFER	ENCE
		EXTRUSION			FROM	DIE
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.712	1.732	+.020	1.752	040	-,020
8	1.723	1.743	+.020	1.750	027	007
С	.949	960	+.011	.998	049	038
D	954	.969	+.015	997	043	028
ε	. 986	1.015	+.029	.997	011	+.018
F	.058	.064	+.006	066	008	002
G	.063	067	<u>+.004</u>	065	002	
Н	<u> </u>	068		066	001	+ <u>.002</u>
J	063	068	+.005	061	_+.002_	_ ±.007
K	064	080	_+.016	064	Q	+.016
M	064	098	+.034	064	0_	
N	063	081	<u>+.018</u>	064	001_	t.le.17
P	057	.068	+.011	062	005	±.006
Q	065	073	+.008	067	002	+.006
3	065	071	_+.006	066	001	+.005
Z	.062	074	_+.012_	066	+.004	+.008
R ₁	.031	.050	+.019	.033	002	+.017
R ₂	.033	.055	+.022	.033	0	+.022
R3	036	.056	+.020	.033	+.003	+.023
R4	032	070	+.038	035	003	+.035
R ₅	036	032	004	035	_+.001_	003
R ₆	050	030	020	035	<u>+.015</u>	
R ₇	040	050		035		+.015
R _B	029	(1)		033	004	(1)
R ₉	040	040	0_	033		
RIO	(1)	.056		.033	(1)	+.023
RII	(1)	040	40 00	.033	(1)	+.007
R ₁₂	(1)	.051	**	033	(1)	+.018
$\boldsymbol{\theta_{i}}$	89.4	87.7	-1.7	90°	6	2.7
θ2	88.9	86.6	-2.3	<u>89.7°</u> 89.8°	8	3.1
θ_3	39.6	86.9	-2.7			-2.9
04	89.3	86.4	2.9	<u>89,9°</u>	6	

⁽¹⁾ Too Irregular to measure

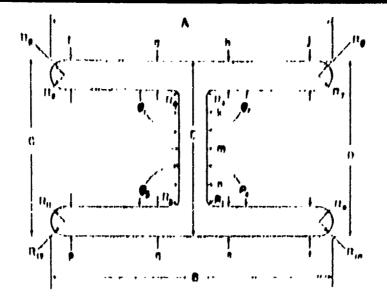


TABLE 9

Dimensional Runout and Die Performance
for TZM Extrusion No. 33

		EXTRUSION			DIFFE	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.740	1.744	+.004	1.752	012	008
•	1.735	1.744	+.009	1.753	018	009
C	972	.973	+.001	. 999	027	026
D	975	. 973	002	.999	024	026
E	985	. 988	+.003	997	012	009
•	064	062	002	067	003	005
0	063	064	_+.001		003	002
H	065	060	+.001	.066	001	<u> </u>
J	065	062	003	068_	003	006
	.063	.068	_+.005	.064	001	+.004
K	.064	1070	+.006	.064	0	+.006
M N	.062	,069	+.007	.064	002	+.005
77	AXXA		TIVYI			
•	065	.065	. 0	.068	003	003
Ó	,066	.067	+.001	.068	002	001
Š	.064	.067	+,003	.067	003	0
z	, 264	.064	0	:067	003	003
-		***************************************		***************************************		
Ri	.030	.036	+.006	.033	003	+.003
R ₂	.028	.036	+.008	.034	006	+.002
R3	.033	.037	+.004	.033	0	+.004
R4	034	036	+.002	.034	<u> </u>	+.002
R ₅	032	.037	+.005	.032	0	+.005
R	043	(1)	• •	030	+.013	(1)
R ₇	034	029	005	.033	+.001	004
Rs	.042	.040	002	030_	+.012	+.010
R ₉	.035	041	+.006	034_	+.001	+.007
RIO	038	022	016	034_	+,004	012
R _I i	.032	.030	002	.033	+.001	003
R ₁₂	.024	032	+.008	.032	008	. 0
-16						_
$\mathbf{e}_{\mathbf{i}}$	89.5	89.0	5	90	5	1.0_
02	90.0	89.0	1.0	89.7	t.3	
θ ₃	90.0	88.9		90	0	lal
04	90.0	89.0	-1.0	90	0	-1.0

⁽I) Too irregular to measure

TABLE 10

Dimensional Runout and Die Performance for TZM Extrusion No. 34

		EXTRUSION			DIFFEF FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
Α	1.740	1.743	+.003			
8	_1.735 _	1,736	+.001	CONTRACTOR OF THE PARTY OF THE		
С	962	. 965	+.003			
D	976 _	.978	+.002	apara ermana e erranoma		
Ε	986 _	. 986	0		papaga a restrictivo in institutura de la restrictiva de la restri	
F	064	.063	-,001	Printed and the constitution		
G	.062	068	+.006			
Н	066	069	<u>+.003</u> _			
J	065	073	+.008	And the second s		
ĸ	060	062	+.002			
N,	.060	062				
N	060	061	+.002			
Р	.066	.064	002			
0	066	.068	+.002			
3		.067	+.002			
Z	.064	.068	+.004			
R	.034	.060	+.026			
R ₂	.037	.057	+.020			
R 3	.0.32	.056	+.024			
R 4	032		<u>+.028</u>			
R ₅	,031	034	+.003			
RG	035	045 _	+.010	-		
R ₇	031	(1)		-		
R ₈	030	(1)				
$\mathbf{R}_{\mathbf{g}}$	035	050	±.015			
R _O	035	(1)		The second second	empression water against the a gas	
κ_{ij}	.034	.031	003 _			
R 12	.039	,033	006	<u> </u>	Marin at the second second	10 − 10 − 10 − 10 − 10 − 10 − 10 − 10 −
Θ,	90.0 _	90.0	0 .	<u>-</u>		•-
62	89.5	89.7	_ +.2			
Θ_3	89.1	89.3	+,2 =	<u> </u>		•
94	_ 30.4 _	_ 89,7	t-1	and the second second		

ii) Too Irregular to measure

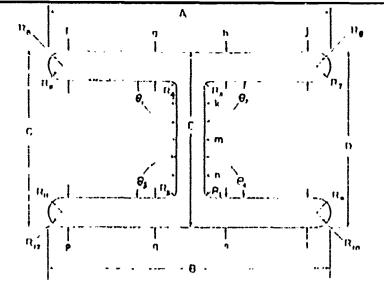


TABLE 11

Dimensional Runout and Die Performance
for TZM Extrusion No. 35

		EXTRUSION			DIFFEI FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.738	1.735		1.751	013	016
В	1.739	<u>1.734</u>	005	1.752	013	018
С	.959	.971	+.012	.998	039	027
D	978	. 968	010	.998	020	030
Ε	. 968	986		.998	030	012
F	057	.059	+.002	.061	004	=.002
G	060	.060	0	.061	001	001
н	.061	.060	-,001	.061	0	001
J	.058	.059	+.001	.062	-,004	003
K	059	.058	001	.059	0	001
M	.058	-058	0	.060	002	002
N	057	.058	+.001	.059	002	001
P	059	060	+.001_	062	003_	002
Q	.062	.061		.062	0	001
9	061	061	0	.062	001	001
Z	.059	.059	0	.061	002	002
D.	060	030	030	034		004
R ₁ R ₂	.065	•030	035	.032	+.033	002
₂ R _З	.070	.027	043	.032	+.038	005
11.3 R ₄	.073_	.027	046	.028	+.045	001
՝ 4 R ₅	.030	.030	0	.031	001	001
из Я _б	.019	.044	+.025	.032	-,013	+.012
ь R ₇	.030	.035	+,005	.032	002	+.003
R ₈	(1)	.046		.031		+.015
R ₉	,034	.030	004	.033	+.001	003
R _{IO}	(1)	031		.033		002
RII	.031	.030	001	.033	-,002	003
R ₁₂	.041	.030	011	,033	+.008	003
0,	89.0	89.7	+.7	90.0	-1.0	3
02	90.0	90.0	0	90.0	0	0
θ ₃	89.7	89.6	1	90.0	3	4
θ ₄	90.0	90.0	0	90.0	0	0

⁽i) Too Irregular to measure

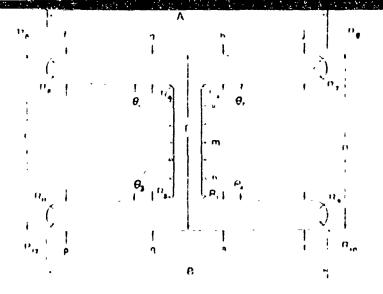


TABLE 12

Dimensional Runout and Die Performance for TZM Extrusion No. 36

		ror 12M	Extrusion No). 30		
					DIFFEF	
		EXTRUSION			FROM	DIE
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.735	1.739	+.004			
В	1.731	1.734	+.003			
c	962	. 966	+.004			
D	.971	.972	+.001			
ε	• 986	.987	+.001			
_						
F	.060	.059	001			
G	.062	.064	+.002			
н	.062	.063	+.001			
J	.062	.059	003			
-						
ĸ	.057	.058	+.001			
M	.057	.059	+.002_			
N.	.059	.059	0			
.,						
Р	.060	.053	,007_			
Q	.061	.061	0			
3	.061	.061	0			
Z	.060	.059	001			
2						
ρ.	.052	.057	+.005			
R _I R ₂	.057	.053	004	_,		
	.055	.063	+.008			
R ₃	.053	.050	003			
R ₄	.031	.030	001			
R ₅	.030					
R ₆	.031	.034				
R ₇		(1)				
8 8	.031	.041	+,010			
e ^A	034	.061	+.027			·
R _{IO}	.039	.033	006			
RII	.039 .037	(1)				
R ₁₂		X* Z		-		
0	89.7	90.0	+.3			
o ₁	89.7	89.2				=
θ ₂	89.4	89.5	+.1	parameters of the second		
93	90.0	89.5				
θ_{4}	~~~~ <u>~~</u>					****

⁽¹⁾ Too irregular to measure

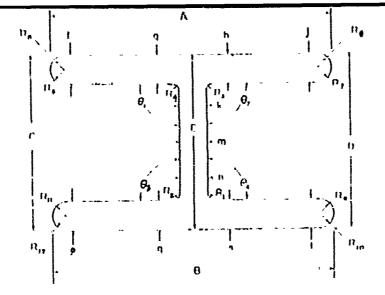


TABLE 13

Dimensional Runout and Die Performance
for TZM Extrusion No. 37

					DIFFER	
		EXTRUSION			FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.733	1.729	004	_1.752	019	023
B	1.727	1.727	0	_1.752	025	
C	.973	.975	+.002	•999	026	024
D	.972	973_	+.001	999	027	
E	, 984	987	+,003	998	014_	011_
-	.060	.064	+.004	.061	001_	+.003
F	.061	.066	+.005	.062	001	+.004
G	.061	.063	+.002	.061	0_	+.002
H J	.059	.059	0	.061	002	
	.056	.062	+.006_	.059	003	+.003
K	.057	.064	+.007_	.060	003_	+.004
M	.056	.063	+.007	,060	-,004	+.003
N						
0	.059	.062	+.003	.061	002	+.001
P Q	.060	.065	+,005	.060	0_	+.005
9	.061	.063	+.002		001	+.001
z	.059	.057		061	002_	,004
_						. 050
R _I	.031	.088	<u>+.057</u>	030	+.001	+.058
R ₂	.031	.074	+.043	030	+.001	+.044
R3	.035	.070	+.035	.035	$\frac{0}{+.002}$	+.035 +.038
R ₄	.035		+.036	.033		1.050
8 ₅	034	(1)		.035	<u>001</u>	
R ₆	033	(1)		035	002	
R ₇	030	(1)		.035	005 006	
ก่	029	(1)		035	003	+.005
R ₉	032	040	<u>+.008</u>		005	
R ₁₀	030	(1)		.035	003	
RII	032	_(1)			+.006	
R ₁₂	041	(1)		035		
0,	38,7	90.0	<u>+1.3</u>	90.0	1.3	0
02	89.6	89.2		90.0	4	8
e ₃	88.5	88.8	<u>+.3</u>	_ 90.0		1_2
ε3 θ ₄	90.8	90.0	8	90.0	8	0
~~						

⁽¹⁾ Too irregular to measure

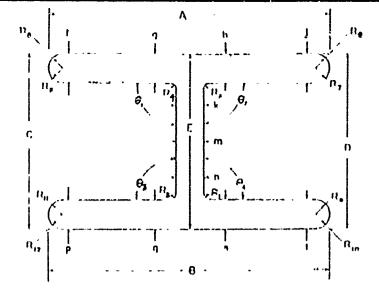


TABLE 14

Dimensional Runout and Die Performance for TZM Extrusion No. 38

		EXTRUSION			DIFFER FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1.741	1.752	+.011	1.762	021	011_
В	1.740	1.753	<u>+.013</u>	<u> 1.763</u> _	023_	013
C	957	974		1:008	051_	034
D	975	,974		1,008	<u>0</u> 33	034
E	.992	1.011	+.019	1.007	015	+.004
_	069	095	. 017	.072	004	+.013
F	.068	.085	+.017	.072	002	
G	070		+.008	.071		+.006
អ	069	080	+.011 _			+.009
J	070	081	t_011_	071	001_	
ĸ	.066	.073	+.007	.070		+.003
M	.067	.086	+.019	.069	002	+.017
N	.066	.074	+.008	.067	001	+.007
	070	.082	1 012	071	-,001	+.011
P	070		+.012	.071 .072	701	+.017
Q	071	.089	+.018			
9	071	083	+.012	.072	<u>001</u>	+.011
Z	070	.076	+.006	.071	001	+.005
R _I		049	+.015	.032	+.002	+.017
R ₂	.038	.047	+.009_	,033	+.005	+.014
R ₃	029	.047	+.018	.029	0	+.018
R ₄	027	044		026	+.001	+.018
R ₅	039	091	+.052	038	+.001_	+.053
R ₆	034	(1)		036	002_	
R ₇	035	055	<u>+.020</u>	037	002	+.018
Ra	036	(1)		034	+.002	
R ₉	Ω38	.042	±.004_	039		+.003
R _{IO}	032	043	+.011_	035		+.008
RII	039	(1)		.034	+,005	
"11 R ₁₂	037	(1)		035	+.002	•
		06.5	. 0 . 5	00.0	_	
o_i	89.5	86.0	<u>+3.5</u>	90.0	5	4.0
02	<u>89.0</u>	87.2	<u>-1.8</u>	90.0		<u>-2.8</u>
θ3	88.4	87.5	9	90.0		
84	90.0	86.0	4.0	90.0	0	4.0

⁽¹⁾ Too irregular to measure

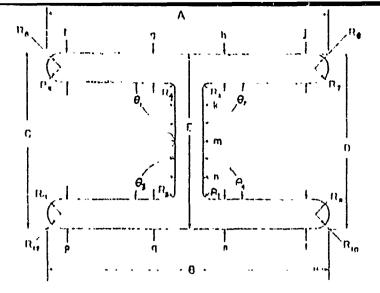


TABLE 15

Dimensional Runout and Die Performance
for TZM Extrusion No. 39

					DIFFER	
		EXTRUSION	· · · · · · · · · · · · · · · · · · ·		FROM	DIE
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1./27	1.750	<u>+.023</u>	. <u>.748</u>		+.002
8	_1.727	_1.740	<u>+.013</u>	1.750	021	<u>010</u>
C	<u>.966</u>	<u> </u>	<u>+.004</u>	1.001	035	<u>031</u>
. D	.970	.970	0	1.001	031	<u>031</u>
E	. 985	1.010	+.025	1.001	016	+.009
F	,075	.087	+.012	078	003	+.009
G	077	090	<u>+.013</u>	078	001	+.012
H	.077	.088	<u>+.011</u>	.078	-,001	+.010
J	076	(1)		.078	002	
K	072	081	+.009	076	,004	+.005
м	.072	.109	+.037	.076	÷.004	+.033
N	072	08 <u>8</u>	+.016	.076_	004_	
Р	076	(1)		.078	002	•=
Q	077	094	+.017	079	002	+.015
S	.077	.095	+.018	.078	001	+.017
Z	.075	.087	+.012	.078	003	<u>+.009</u>
R ₁	032	.070	+.038	.029	+.003	+.041
R ₂	.030	.034	+.004	.029	+.001	+.005
R3	.029	.051	+.022	.026	+.003	+.025
R4	.029	.054	+.025	.030	001	+.024
R _อ ์	.038	(1)	***	.029	+.009	75 cs
R ₆	032	(1)		030		
R ₇	.043	(1)		030	+_013	
R ₈	055	050		029		±.021_
R ₉	.039	.040	+.001	.029	+.010	+.011
R _{IO}	.031	(1)	1 001	.030	+.001	
RII	.029	.050	+.021	.032	003	+.018
H15	.03/	(1)		.029	***************************************	*
θ ₁	89.7	82.0		90.0	3	-8.0
0 ₂	89.4	85.0	-4.4	90.0		-5.0
93	89.4	88.7	7	90.0	6	
04	89.8	89.0	8	90.0	2	1.0

⁽¹⁾ Too irregular to measure

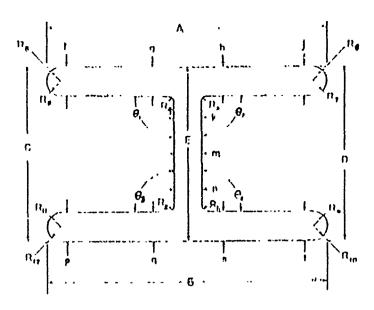


TABLE 16

Dimensional Runout and Die Performance
for TZM Extrusion No. 40

		EXTRUSION			DIFFER FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
A	1,762	1.764	+.002	1.774	012	010
8	1.758	1:760	+.002	1.773	015	013
C	• 984	1.005	+.021	1.018	034	013
D	.991	1.009	+.018	1.018	027	009
ε	1.006	1.010	+.004	1.017	011	007
F	.082	.083	+.001	.083	001	0_
G	.083	.084	+.001	.082	+.001	+.002
н	.083	.085	+.002	.082	+.001	+.003
j	.082	.085	+.003	.082	0	+.003
к	.075	.076	+.001	.079	004	003_
M	.076	.077	+.001	.080	004	
N	.074	.076	+.002	.079	005	
P	080	.081	+.001	.082	002	001
Q	.081	.082	+.001	.081	0	+.001
3	.080	.082	+.002	.081	001	+.001_
Z	.080	.081	+.001	.082	002	001
R	.035	.038	+,003	.033	+.002	+.005
R ₂	.032	.040	+.008	.033	001	+.007
n _Z Яз	031	038	+.007	.030	+.001	+.008_
7.3 R ₄	.030	037		030	0_	
114 R5	.046	.045		.045	+.001	0_
R ₆	050	042	8008_	045	+.005	
R ₇	.043	.042	001	040	+.003	+.002
Rg	.040	.040	0	.040	0	0_
$R_{\mathbf{g}}$.046	.047	<u>+,001</u>	.045	+.001	<u>+.002</u>
е 10	.042	055	1.013	.040	+.002	<u>+.015</u>
R ₁₁	(1)	.050		043		+.007
R ₁₂	.055	.054	001	.043	+.012	+,011
o _l	89.9	90.0		90.0		0
82	89.5	90.0	+.5	90.0	- <u>5</u>	0 6
θ_3	89.5	89.4	1	90.0	5	6
84	89 9	89.7		90.0	<u>1</u>	3

(I) Too Irregular to measure

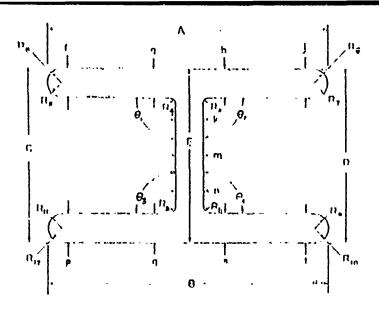


TABLE 17

Dimensional Runout and Die Performance
for Stainless Extrusion Number 41

		EXTRUSION			DIFFEF FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
Α	1.712	1.721	+.009	1.773	061	052
В	1.713	1.724	+.011	1.775	062	051
C	955	.979	+.024	1.018	063	021
Ð	975	. 996	+.021	1.017	-,042	021
Ε	.993	. 989	004	1.017	024	028
-						
F	057	.059	+.002	066	009	007
G	062	.059	003	.067		008
Н	.061	.060		,067		
J	.055	.059	<u>+.004</u>	066		
ĸ	.069	.066	003	.067	+.002	001
M	.069	.067	002	.067	+.002	0_
N	.069	.067	002	.068	+.001	001
Р	.053	.059	+.006	.063	010	004
Q	.059	.060	+.001	,067		
3	062	.061	001	<u>.06</u>	+.005_	
Z	058	.060	+.002	.064	+.006	004
	*					
R ₁	.031	.032	+.001	030	<u>+.001</u>	<u>+.002</u>
R'2	.029	.032	+.003	.030	001	+.002
R3	.030	.032	+.002	.030	0_	<u>+.002</u>
R ₄	.032	.032	0	032	0_	0_
R ₅	.029	.028		032		
R ₆	(1)	.020		.030		010
R ₇	.030	.032	+.002	.032	002	0
$R_{\mathbf{B}}$	(1)	.031		.031	-	0
R_{9}^{7}	.031	.031	0	.032	001	001
RIO	031	031	0_	.030	+.001	+.001
$\kappa_{11}^{(0)}$	(1)	.029		.032		003
R ₁₂	(1)	.030		.032		002
1 4						
o_i	90.8	89.7	<u>-1.1</u>	90.7	+.1	1.0
62	88.8	89.5	+.7	89.7	9	
θ ₃	88.5	89.3	+.8	89.7	-1.2	
θ_4	90	91.3	+1.3	90.7		+,6

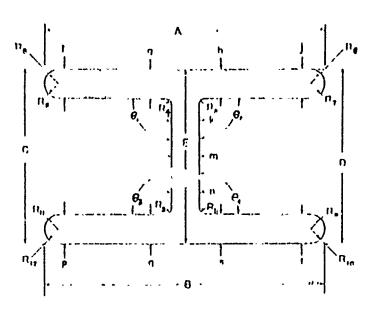


TABLE 18

Dimensional Runout and Die Performance for TZM Extrusion No. 42

		EXTRUSION			DIFFERI FROM	
LOCATION	FRONT	BACK	DIFFERENCE	DIE	FRONT	BACK
Α	1,740	1.716	024	1.776	036	060
В	1.783	1.746	037	1.775	+,008	029
C	996	. 982	014	1.020	024	038
D		1.002	+.007	1.018	023	016
ε	1.000	1.006	+.006	1.018	018	012
F	059	.053	~.006	.066	007	013
G	.063	.063	0_	067	004	004
н	.063	.064	+.001	.067	<u>004</u>	
J	.059	.056		.063	004	007
K	.067	.071	+,004	.067	0_	+,004
M	.067	.076	+.009	.067	0	+.009
N	065	070	+.005	067	002	
ρ	.060	.061	+.001	.062	002	0,001
Q	.065	.065	0	.063	+.002	+.002
3	.063	.064	+.001	.063	0_	+.001
Z	.060	.060	0	063		003
R ₁	.031	031	0_	.032	001	-,001
R ₂		,032		030	<u>+.003</u>	+.002
R ₃	031	032	+.001	030	+.001	+.002
R ₄	032	032	0_	030	±.002_	+.002
R ₅	030	(1)		033	003_	(1)
R ₆	040	(1)	005	030	±_010	(1)
R ₇	027	022		031		009
Rg	(1) (1)	(1) 024	A	031	$\frac{(1)}{(1)}$	(1)
R ₉	(1)	034		031	(1)	+.003
Rio	.030	.030_	0	.030	0	0
RH	(1)	(1)	<u></u>		(1)	(1)
R ₁₂						\.\2\
o _i	<u>91</u> 90	90 89.1	1.0 9	90.1 89.5	<u>+ 9</u> +•5	4
θ2	89.5	88.3_	1.2	90		-1.7
93	91.2	90.5		89.5	<u>+1.7</u>	+1.0
84						

⁽¹⁾ Too irregular to measure

These extrusions were exploratory in nature and were made primarily to determine the influence of die design on liner pressure and extrusion dimensional runout.

Extrusion No. 28 with Die H-DM27 and Extrusion No. 29 with Die H-DM25 were made to determine the affect on liner pressure by a variation in fillet radii of 1/32 inch and 3/16 inch. Other die design features such as nominal 0.062-inch web opening and 20 degree basic angle were the same for both dies. Extrusion No. 29 with a fillet radius of 3/16-inch required little more liner pressure than Extrusion No. 28 with 1/32-inch fillet radius. Dimensional checks given in Tables 4 and 5 were better for Extrusion No. 29 having a larger fillet radius.

Examination of the dies after extrusion revealed severe die metal flow in the fillet radii in both dies.

Extrusion No. 30 with Die H-DM28 having 1/32-inch fillet radius, nominal 0.070-inch web opening and 20 degree basic angle did not alter significantly the pressure required for extrusion. Dimensional runout for this extrusion was very good except in the fillet radii (Table 6). Again severe die metal flow occurred in the fillet radii.

Extrusion No. 31 with Die H-DM35 having 1/22-inch fillet radius, nominal 0.062-inch web openeing and 30 degree basic angle did not alter peak liner pressure as required for previous extrusions with 20 degree basic angle dies. Run liner pressure, however, was somewhat less and the press seemed to accomplish the extrusion with less effort. Die H-DM35 also revealed die metal flow in the fillet radii. Dimensional runout, Table 7, was not good for this extrusion.

Extrusion conditions for Extrusion No. 31 were the same for Extrusion No. 32. Good dimensional runout, Table 8, was found in the extrusion except in the stem section which experienced coating failure. No die metal flow was found in the fillet radii.

Entry radii pattern for Die H-DM39 used in Extrusion No. 33 was not the same as that in previously used dies. This design is shown in Figure 7. Dimensional runout was very good as shown in Table 9. This die is being prepared for reuse.

Extrusions No. 34 through No. 36 were accomplished with powder metallurgy TZM billets. Good response to extrusion was displayed by this material which was extruded to nominal 0.062-inch web thickness from a low temperature of 2800F. Dimensional runout for these extrusions are given in Tables 10 to 12. Evaluation of these extrusions is given in the Appendix to this report.

Extrusions Nos. 37 and 38 made with similar die design but at 32COF and 335OF billet temperatures, respectively, revealed very poor coating performance at the higher billet temperature. Considerably less run pressure at the higher temperature was also observed although the peak pressures were similar.

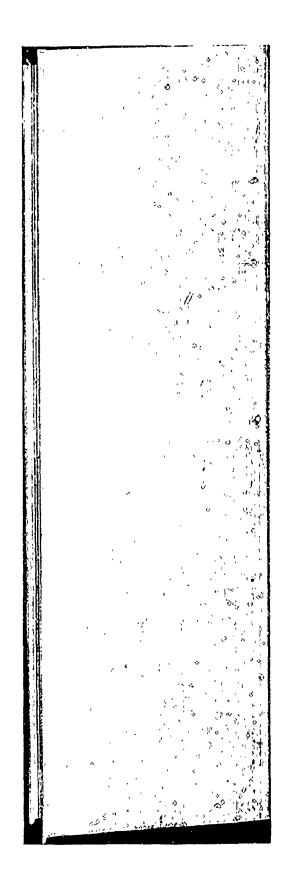
TZM in the stress relieved condition was used for Extrusions Nos. 39 and 40. Extrusion No. 39 from 3200F billet temperature was poor and Extrusion No. 40 from 2800F blocked the press. No additional extrusions will be made with this material.

Solid zirconia H-shaped dies were used for the first time in this program. Extrusion No. 41 with 304 Stainless steel was accomplished from 2100F with excellent results. Dimensional runout is shown in Table 17. It was apparent that this die material without ductility can be supported adequately for extrusion purposes. TZM Extrusion No. 42 from 3200F was then made and similar good results were obtained (Table 18). Furthermore, this extrusion required lower liner pressure than that for previous extrusions with segmented and coated dies. This lower observed pressure was due in part by the absence of segmented interfaces which are a source of weakness and erosion and by the material's inherent resistance to wear.

In general, the extrusion of TZM to 0.062-inch web thickness and 1/32-inch fillet radius was accomplished within available liner capacity of 237,000 psi without support tooling failure. Billet temperature for this purpose was 3200F and there is a possibility this can be lower. Die performance with segmented and coated tool steel dies was not consistent. On the other hand, die "wash" and severe corner "flash" did not occur. A few segmented, coated dies, regardless of design and material, experienced metal flow (not wash) beneath the coating at the fillet radius and may be the cause for changes in fillet radius size. Die design having a 30 degree basic angle rather than 20 degree was more favorable at least in lowering pressures required for extrusion. Lastly, the promising performance of solid zirconia H-shaped dies was demonstrated, particularly by the high resistance to wear and erosion under extrusion conditions.


D. Extrusion Evaluation

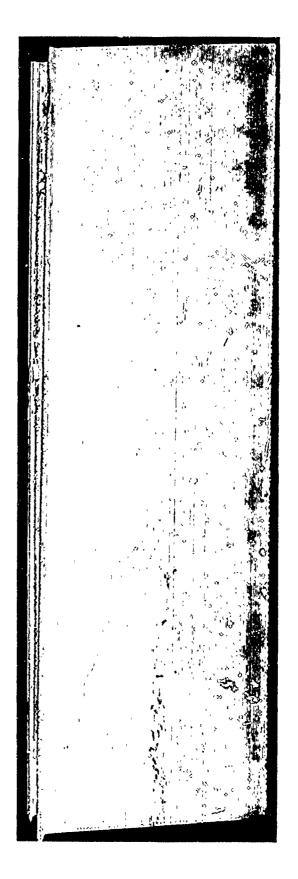
1. Physical Characteristics


As-extruded surface quality of H-shaped extrusions of TZM are shown in Figures 9 through 21. Remarks on surface quality and extrusion lengths are given in Table 2. Surface RMS readings are summarized in Table 19.

Surface quality of these extrusions was not a matter of primary concern at this point in the program. Changes in billet structure and die design along with lubrication studies already underway should lower RMS surface values. Results thus far do indicate that the goal of 50 RMS can be achieved. It was apparent too that surface quality was consistent and remarkably good for Extrusion No. 42 produced with a solid zirconia die which was not polished or given any finishing after sintering.

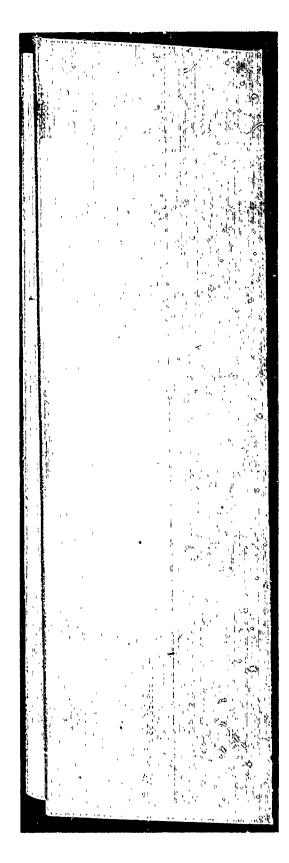
Visual examination of the corners were summarized as follows:

Back-End View Magnification: 1X

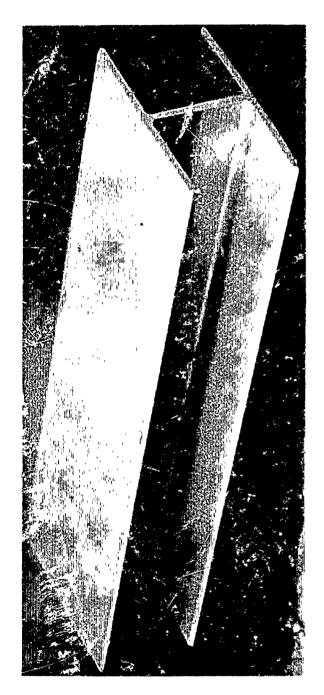


Back-Side View Magnification: 1-1/4X

FIGURE 9


Back-End View Magnification: 1X

Back-Side View Magnification: 1-1/4X



Back-End View Magnification: 1X

Back-Side View Magnification: 1-1/4X

As-Extruded Surface After Sandblasting of TZM Extrusion No. 30

Back-End View Magnification: 1X

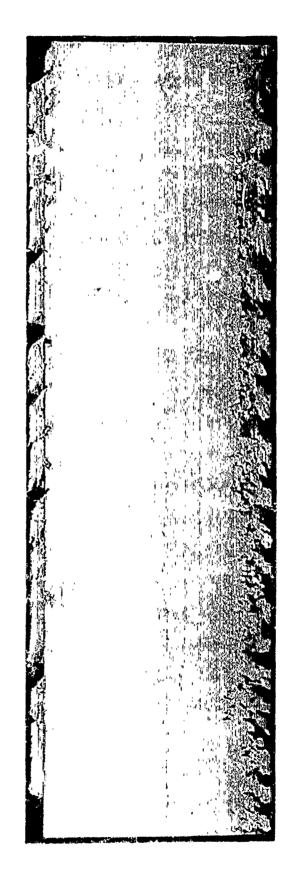
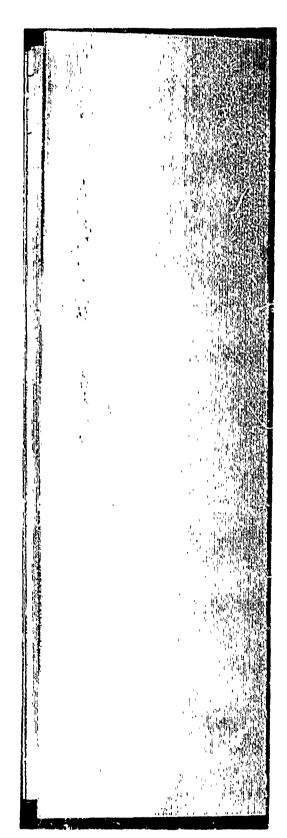

Back-Side View Magnification: 1-1/4X

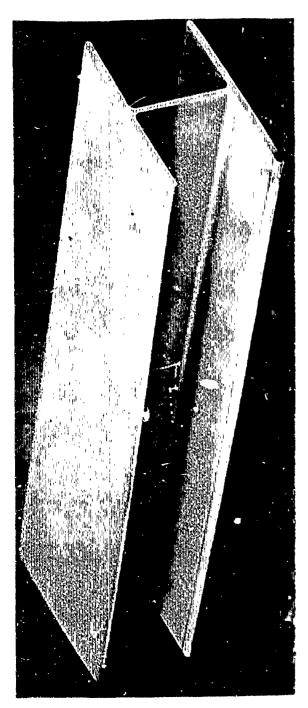
FIGURE 12

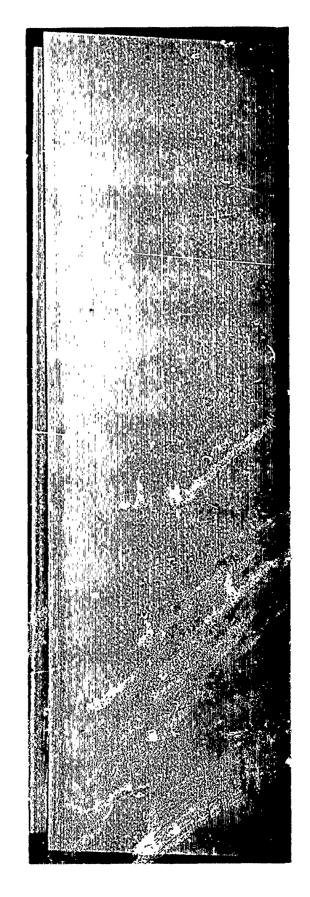
As-Extruded Surface After Sandblasting of TZM Extrusion No. 31

Back-End View Magnification: 1X

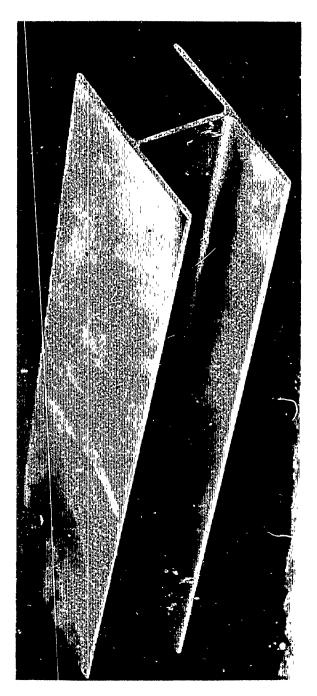


Back-Side View Magnification: 1-1/4X


FIGURE 13


Back-End View Magnification: 1X

Back-Side View Magnification: 1-1/4X


Back-End View Magnification: 1X

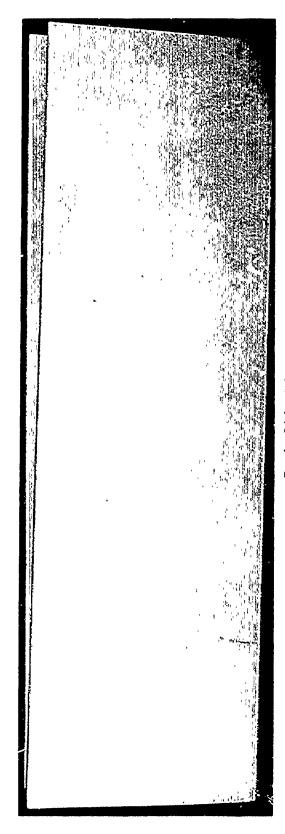
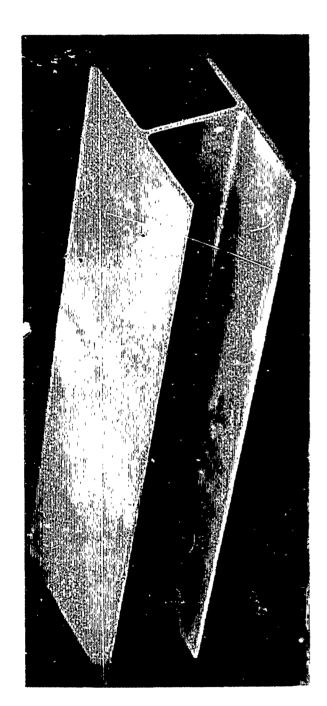
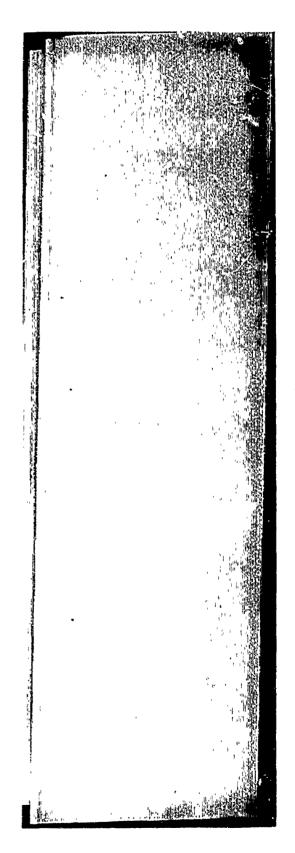

Back-Side View Magnification: 1-1/4X

FIGURE 15

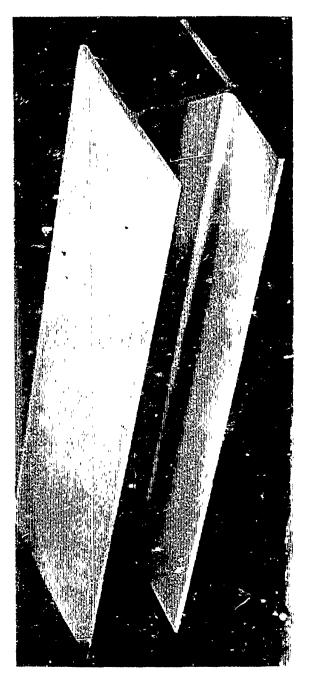
As-Extruded Surface After Sandblasting of T2M Extrusion No. 34

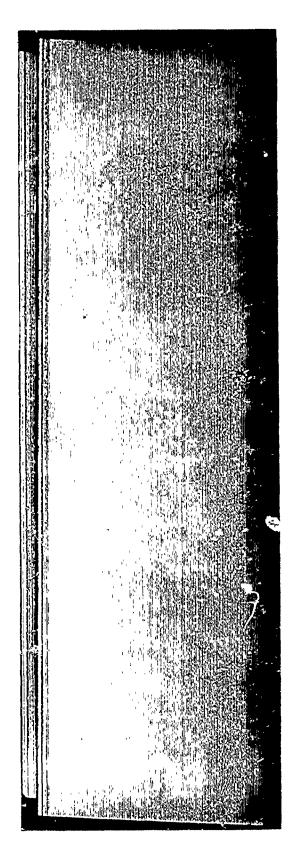


Back-End View Magnification: 1X

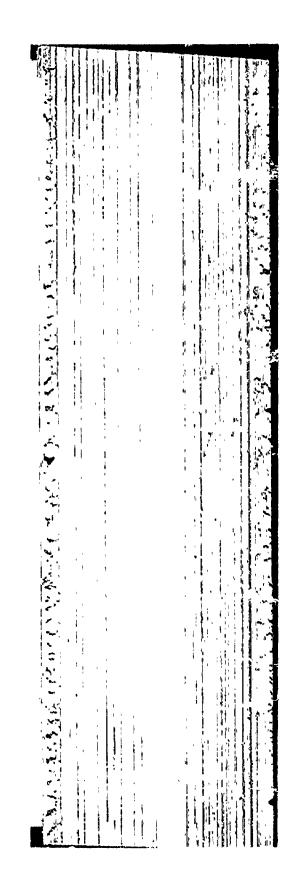


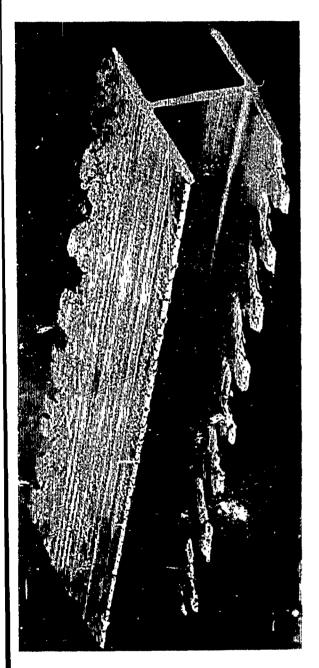
Back-Side View Magnification: 1-1/4X

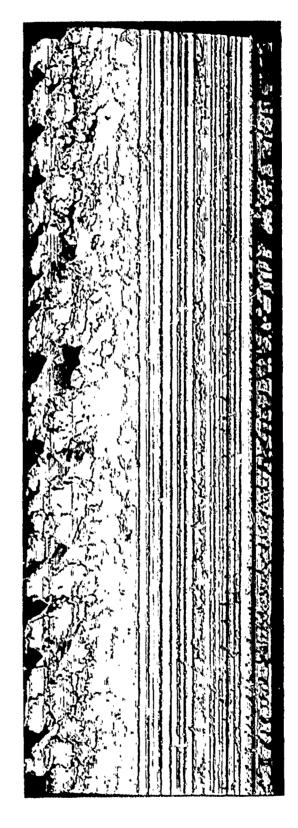

FIGURE 16


Back-End View Magnification: IX

Back-Side View Magnification: 1-1/4X


Back-End View Magnification: 1X


3ack-Side View
Magnification: 1-1/4X


Back-End View Magnification: 1X


Back-Side View Magnification: 1-1/4X

Back-End View Magnification: 1X

Back-Side View Magnification: 1-1/4X

Back-End View Magnification: 1X

Back Side View Magnification: 1--/4X

FIGURE 21

As-Extruded Surface Atter Sandblasting of TZM Extrusion No. 42

	had	[H]	70-130 60-80	60-70 70-80	60-70 70-100	30-60 70-80	70-30	60-70 60-70	60-70 50-60	80-90 70-80	70-80 70-80	60-70	80-120 80-160	80-90 90-160	70-80	80-110 70-80	80-100 40-70	60-80
	*	니	120-150 20-30	60-70	60-70 60-70	50-60 70-80	70-80 60-70	60-70 50-60	60-70	80-90 70-80	60-70 80-90	60-70 60-70	80-140 70-120	60-80 60-70	60-70 (1)	70-80 70-80	15-25 10-30	70-80 60-70
	 œ	ы	40-60 40-50	60-70 70-80	60-80 70-120	02-09	60-80 80-120	60-70 70-90	50-60 50-70	70~80 70-80	50-60 70-90	80-90 50-70	70-130 80-130	80-90 110-130	70-80 180-320	70-80 50-70	110-120 60-70	06-09
		ᆈ	20-30 7-12	60-70 60-80	60-70 60-80	60-70	60-70 70-80	60-70 50-60	50-60	70-80 60-70	30-60 70-90	70-80 70-80	80-140 70-110	00-70 60-70	70-80 50-60	70-80 60-70	80-110 10	08-09
	j	H	90-110 4 0- 70	70-80 80-90	70-80 60-110	60-70 70-80	60-70 110-180	60-70 70-110	60-70	70-80 80-90	60-70 70-80	70-80 60-70	90-150 80-130	60-70 120-240	70-80 190-300	80-90 70-80	60-90 30-50	80-90 70-90
Xtrusions	<u> Pa</u>	ᆈ	120-140 20-30	70-80 80-90	60-70 50-60	50-60 70-80	02-09 02-09	50-70 50-60	60-70 50-60	70-80 70-80	70-80 80-90	70-80 60-70	70-130 70-110	60-70 60-70	80-90 70-80	70-80 60-70	20-50 10	70-80 60-70
. TABLE 19 Surface Measurements of H-Shaped Extrusions Average RMS of High Peaks		H	70-160 40-60	60-80 60-70	60-80 70-90	60-70 60-70	50-70 90-120	50-70 70-110	50-60 50-60	70-80 70-90	60-70 70-80	02-09 00-10	80-150 70-120	60-70 150-256	70-80 150-200	60-70 60-70	70-110 50-60	70-90 70-80
TABLE 19 face Measurements of H-Sh Average RMS of High Peaks	M	1	20-30 6-12	50-60 60-70	60-80	50-60 60-70	60-80 60-70	50-60 50-60	50-60 50-60	70-80 70-80	50-60 70-80	70-80 60-70	80-140 70-110	50-60 70-80	70-90 60-70	60-70 70-80	40-70	70-30 60~70
TAB ace Measur verage RMS	Q	Ы	70-240 60-90	80-100 100-110	50-60 80-90	80-100 80-120	70-80 140-210	70-90 150-270	60-70 30-90	70-80 70-30	60-70 70-80	60-70 70-90	70-90 110-150	80-110 200-300	60-70 150-286	70-80 70-80	110-130 30-40	70-80 80-90
•		리	50-60	50-60 70-80	30-40	40-50 -0-50	09 09-07	60-70 90-140	40-50 60-70	60-70	70 - 60 50 - 60	50-60 60-70	70-120 60-110	50-60 50-65	50-60 130-160	40-50	70-100 5-20	60-70 50-60
Profilometer		⊷ı	50-90 60-80	60-70 80-100	60-80 80-90	70-90 90-120	30-90 180-250	70-90 300-450	90-110 80-90	80-90 70-80	30-90 70-90	90-100 70-80	70-80 70-90	80-100 150-450	60-70 130-180	80-100 80-120	90-120 40-60	70-80 90-110
	S)	ᆈ	40-50 10	50-60 70-80	50-60 60-80	30-÷0 60-70	60-70 60-70	-0-50 60-30	60-70 50-60	60-70 50-60	60-70 40-60	70-80 60-70	60-140 60-130	50-70 60-80	50-60 60-70	70-80 50-60	60-90 10-25	50-60 60-70
		Hì	40-50 40-50	30-130 140-170	100-140	90-140 30-100	120-180 90-130	180-320 100-140	60-79 70-80	80-100	60-80 80-100	90-110 70-80	130-180	70-80 200-350	120-180	90-130 70-90	90-130 10-20	120-150 70-30
	ćn	الــ	30-40 20-30	70-80 79-80	100-130	80-120 50-70	120-250 60-70	240-290 70-80	60-70	70-80 60-70	r0-70 30-100	30-90 70-80	90-120 70-80	60-70 70-80	100-170 (1)	90-100 60-80	90-120 10	130-150 70-80
•	4	(⊶ i	80-100 60-70	140-230	80-120 110-150	110-1-0 90-110	120-220 110-200	150-250	80-100 70-90	100-120 90-120	80-90 80-100	70-80 80-90	140-200 120-150	60-70 250-450	120-150 (1)	110-130 80-100	100-120 10-20	90-160
•		ᆈ	90-110 50-60	220-280 30-90	90-130 70-90	90-100 60-70	120-250 30-200	120-220 60-76	50-90 60-70	70-100 70-80	70-80 90-110	70-80 70-80	160-240 70-90	60-70 150-350	90-110	110-120 80-90	80-100 10	80-220 70-30
	Extrusion	Number	: Front Back	Front Back	Front	: Front Back	Front Back	Front Sack	: Front Sack	Frort Back	: Front Back	: Front Back	: Front Back	: Front Back	Front Back	: Front Back	. Front Back	. Front Back
	EX.	ğ Z	27:	23:	ë:	Š.	31:	32:	33:	ë.	35:	36:	37:	38:	39:	70:	41:	43:

Extrusion Sequence Number	Visual Corner Appearance
27	Very slight fin all corners, poor corner fill
28	Slight fin all corners, poor corner fill
29	Poor corner fill
30	Very slight fin all corners, fair corner fill
31	Very slight fin all corners, good corner fill
32	Poor corners
33	Slight fin all corners, good corner fill
34	Very slight fin all corners, fair corner fill
35	Very slight fin all corners, fair corner fill
36	Slight fin all corners, fair corner fill
37	Slight fin all corners, fair corners
38	Very poor corners
39	Very poor corners
40	(no extrusion)
41	No fins, good corner fill
42	No fins, fair corner fill

Corner fins which normally appear from the use of die segments were slight regardless of extrusion conditions and die design. However, only short extrusions were made and this matter may become a problem when longer, 22-foot extruions will be made.

Corner fill or geometry was not good in most extrusions. It is believed that an improvement can be made in this regard by (1) a more refined billet structure to increase extrudability of TZM and (2) a revised conical entry design which will allow more metal to flow into the corners of the die orifice.

2. Metallurgical Evaluation

Transverse microstructures at the back location in the corner, fillet radius and stem center of some H-shaped extrusions were given in the previous interim technical engineering report. (3) These extrusions were made from 3100F 3200F billet temperatures. It is expected that extrusions made during this report period from this same temperature would be similar in microstructure. Specimen material from extrusions produced at a different temperature or reduction ratio is being prepared for examination.

As shown in the previous report, microstructures of H-shaped extrusions were fine grain regardless of location. A tendency for grain growth was noted at the fillet radius.

3. Mechanical Properties

Specimen material was taken from TZM H-shaped Extrusions No.s 22 and 23 accomplished during the previous report period.(3)

Tensile test results are given in Table 20. Specimen material before machining was given a stress relief heat treatment of 1 hour at 2000F in argon.

Good ductility was found regardless of specimen location and direction. Strength values appeared close to values normally found in recrystallized TZM bar material also given in Table 20. Typical values for recrystallized sheet material were not available. It should be noted as a trend that properties can be improved by lower billet temperature. Good test results, as given in Table 20 for round Extrusion No. 17 made from 3000F billet temperature, suggest this temperature as a goal for this program.

Transverse and longitudinal bend tests were made with a deflection speed of 5 inches per minute in a 135-degree die seat. The results of the tests are given in Tables 21 and 22 and in Figures 22 through 26.

Excellent bend ductility was found at room temperature for both extrusions regardless of test direction. Transition bend temperature (IT bend radius) was the following:

Extrusion No. 22

Longitudinal

-100F to -75F

Transverse

(not well established)

Extrusion No. 23

Longitudinal Transverse +35F to +50F OF to +25F

Again, it should be noted as a trend that the bend transition temperature was improved by lower billet temperature.

Full "H" cross-section specimens were taken from Extrusion No. 37 in the as-extruded condition for tensile and compression tests at room temperature. The results are given in Table 23. Figures 27 through 29 show compression test sections after testing. Reasonable load carrying ability by these extrusion sections was noted in these tests. However, yield and ultimate strength values were almost identical regardless of testing procedure, suggesting low tolerance for plastic deformation at room temperature.

4. Rollability

Flange material was obtained from Extrusion No. 23 for rolling on a 4-high Stanat mill with 10, 20 and 30 percent reductions per pass from 1200F furnace preheat temperature. Temperature during rolling was within the range of 700F to 900F. Average Vickers hardness versus rolled size and percent reduction is shown in Figure 30. Transverse microstructures are shown in Figures 31 through 33.

TABLE 20

Room Temperature Tensile Tests

As-Extruded H-Shaped Material
(Stress Relieved Condition)

Strain Rate to Yield 0.005 in/in/min Strain Rate to Fracture 0.05 in/in/min

Extrusion

Billet							
Temperature(°F)	Location	Specimen Thickness	Ultimate (ksi)	0.2% Y.S. (ksi)	.02% Y.S. (ksi)	% Elong.	E x 10 ⁻⁶
3100	Stem	.051	72.7	65.4	57.6	22.5	47.5
	Stem	.051	73.9	56.1	49.0	18.6	52.1
	Flange	.061	75.6	67.6	58.8	26.0	49.3
	Flange	.061	74.1	62.0	48.6	41.5	40.5
3200	Stem	.035	73.7	57.0	42.5	14.9	53.6
	Stem	.035	73.7	56.1	49.3	11.4	51.0
	Flange	.058	74.0	63.1	50.9	14,5	44.1
	Flange	.060	71.6	59.9	51.5	30.4	38.8
3000	Round	.251	94.6	75.5	69.4	17.1	54.3
			80.0	55.0		20	
	Temperature (°F) 3100	Temperature (°F) 3100 Stem Stem Flange Flange 3200 Stem Stem Flange Flange	Temperature (°F) Location Specimen Thickness 3100 Stem .051 .051 Stem .051 .061 .061 Flange .061 .035 .035 Stem .035 .035 .035 Flange .058 .060 .060	Temperature (°F) Location Specimen Thickness Ultimate (ksi) 3100 Stem .051 .051 .72.7 .73.9 Flange .061 .051 .75.6 .73.9 Flange .061 .061 .74.1 3200 Stem .035 .73.7 .7 .75.6 .035 .73.7 .75.6 .035 .73.7 .75.7 Flange .058 .060 .71.6 .060 .71.6 3000 Round .251 .94.6	Temperature (°F) Location Specimen Thickness Ultimate (ksi) 0.2% Y.S. (ksi) 3100 Stem Stem Stem Stem Stem Stem Stem Stem	Temperature (°F) Location Specimen Thickness Ultimate (ksi) 0.2% Y.S. (ksi) .02% Y.S. (ksi) 3100 Stem .051 72.7 65.4 57.6 57.6 5.4 49.0 57.6 5.4 49.0 57.6 5.4 49.0 Flange .061 75.6 67.6 58.8 Flange .061 74.1 62.0 48.6 58.8 51.1 57.0 42.5 51.1 49.3 57.0 42.5 51.1 49.3 Flange .058 74.0 63.1 50.9 Flange .060 71.6 59.9 51.5 73.7 59.9 51.5 59.9 51.5 3000 Round .251 94.6 75.5 69.4	Temperature (°F) Location Specimen Thickness Ultimate (ksi) 0.2% Y.S. (ksi) 0.2% Y.S. (ksi) % 3100 Stem .051 72.7 .05.4 .05.4 .05.4 .05.1 .05

NOTE: All Specimens Stress Relieved 2000F - 1 hour in Argon

⁽¹⁾ Bør less than 2-inch diameter in recrystallized condition, Climax Specification Number CMX-WB-TZM-2, May 1964.

TABLE 21

Bend Tests - Extrusion Number 22
As-Extruded and Stress Relieved Material
Extrusion Billet Temperature 3100F
Reduction Ratio 41.5:1
Punch Travel 5 Inches per Minute

Bend <u>Radius</u>	Specimen Temperature (°F)	Bend Angle (°)
Longitudinal lT	+73°	130 (Flattened to 170°)
1/2T	+73°	130
1/3T	+73°	130
1T	+50°	130
1 T	0°	130
1T	-50°	130
1T	-75°	130
1T	~100°	115
Transverse	. 740	
1T	+74°	130
1 T	+74°	30
1T	0°	10

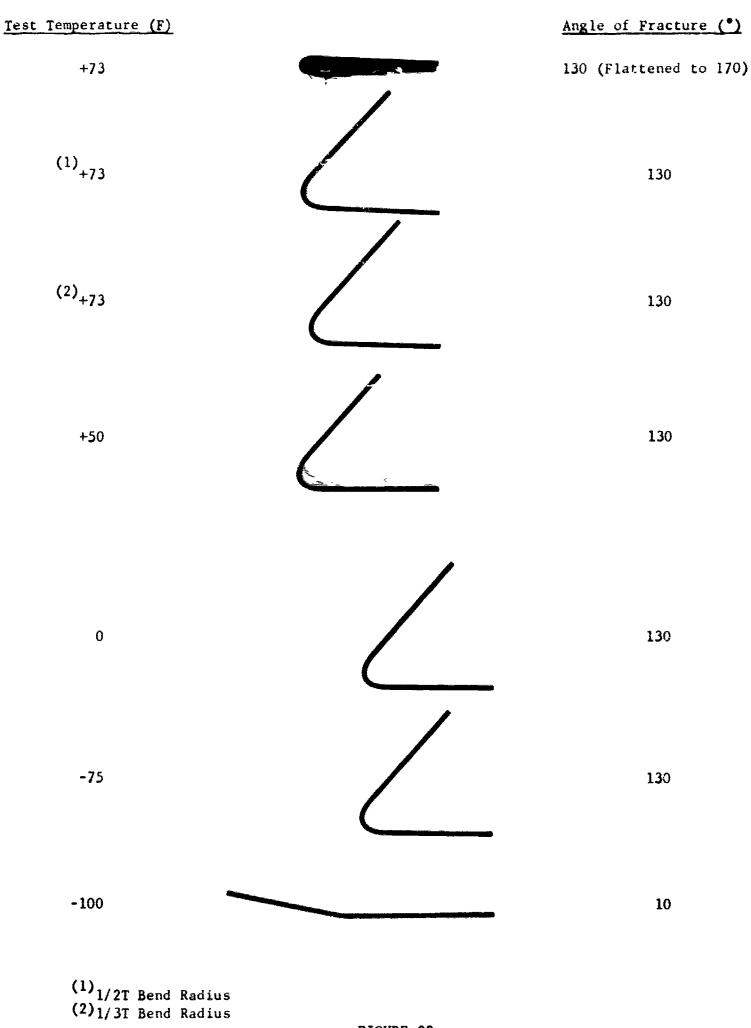
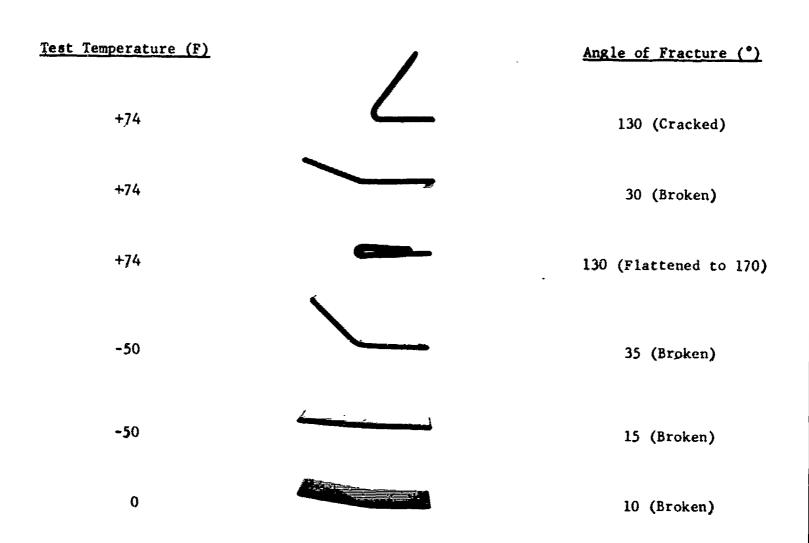
NOTE: All Specimens Stress Relieved 2000F - 1 hour in Argon

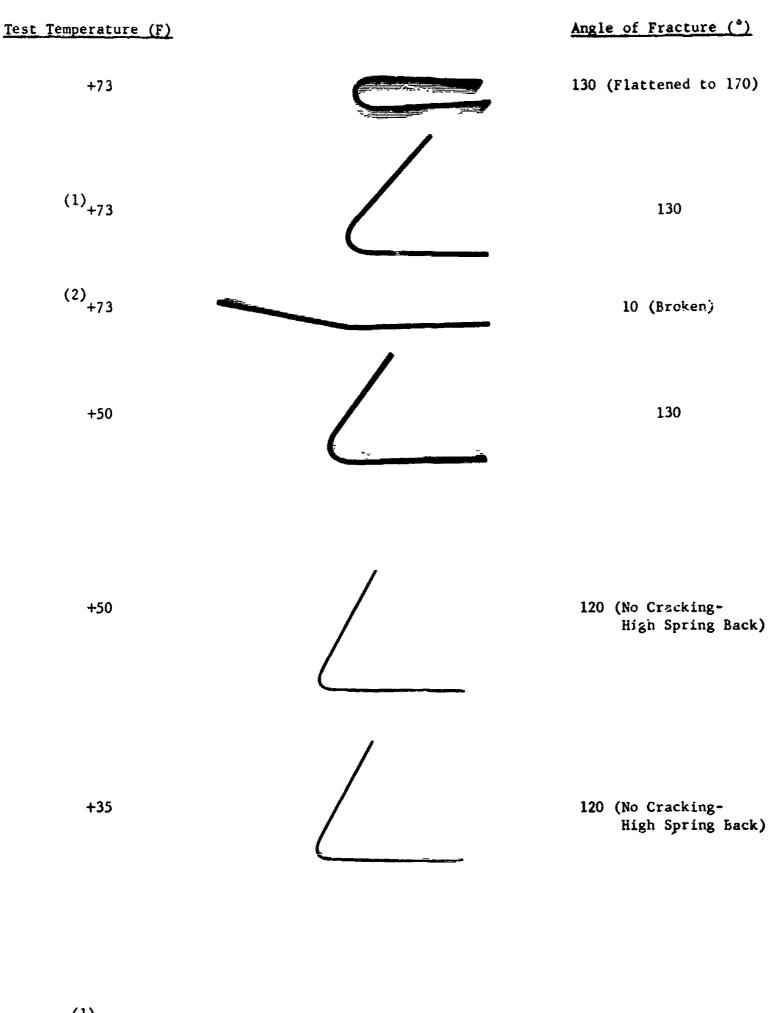
TABLE 22

Bend Tests - Extrusion Number 23 As-Extruded and Stress Relieved Material Extrusion Billet Temperature 3200F Reduction Ratio 40.9:1 Punch Travel 5 Inches per Minute

Bend <u>Radius</u>	Specimen Temperature (°F)	Bend <u>Angle (°)</u>			
Longitudinal 1T	+73°	130 (Flattened to 170°)			
1/2T	+73°	130			
1/3T	+73°	10			
1T	+50°	130			
1T	+35°	120			
1T	+25°	10			
1T	0°	5			
Transverse lT	+74°	130 (Flattened to 180°)			
1T	+25°	130			
1T	0°	130 (Cracked)			
1T	-25°	120 (Broken)			

NOTE: All Specimens Stress Relieved 2000F - 1 hour in Argon


FIGURE 22

PIGURE 23

Transverse Bend Tests - Extrusion No. 22

Magnification: 3/4X

⁽¹⁾ 1/2T Bend Radius (2)1/3T Bend Radius

FIGURE 24

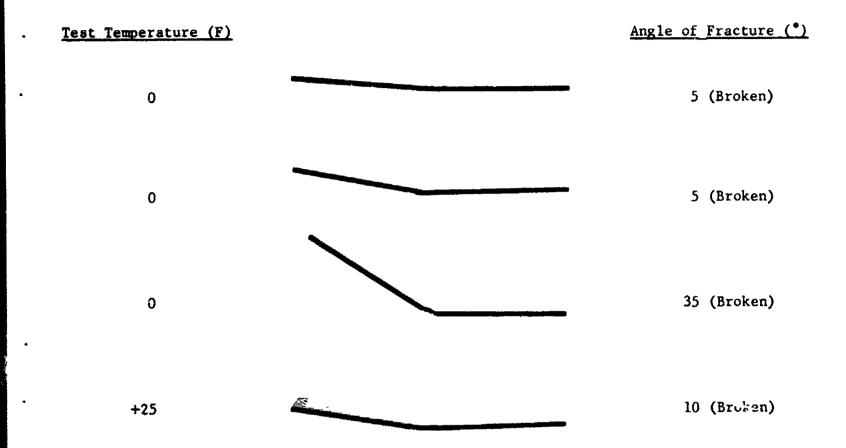


FIGURE 25

Longitudinal Bend Tests - Extrusion No. 23

Magnification: 3/4X

一一一一一一一一一一

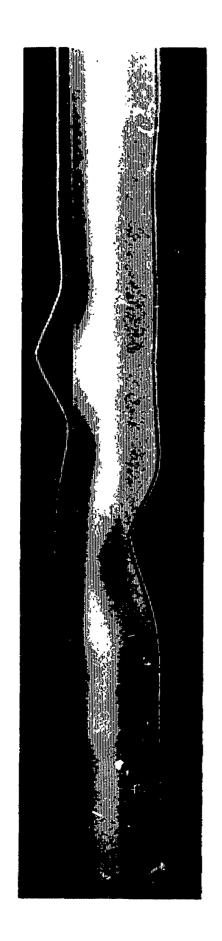
FIGURE 25

Longitudinal Bend Tests - Extrusion No. 23

Magnification: 3/4X

Temperature (F)		Angle of Fracture (°)
+74		130 (Flattened to 170)
+74		130
+25	<u> </u>	130
0	_	130 (Broken)
- 25		120 (Cracked)
-59	ē	120 (Broken)

Transverse Bend Tests - Extrusion No. 23
Magnification: 3/4%


TABLE 23

Room Temperature Tensile and Compression Tests - Extrusion Number 37 Full "H" Cross-Section As-Extruded Condition

Extrusion Billet Temperature 3200F

Reduction Ratio 44.1:1

Specimen Length (inches)	Type of Test	Cross-Sectional Area (in ²)	Load at Failure (pounds)	Stress at Failure (ksi)	.2% Y.S. (ksi)	E x 6
12	Tension	.262	12,200	45.6	39.6	37.6
12	Tension	.264	10,540	39.9	38.3	35.9
12	Compression	.260	11,500	44.2	44 40	45.0
2	Compression	.263	13,000	48.5	47.0	45.0

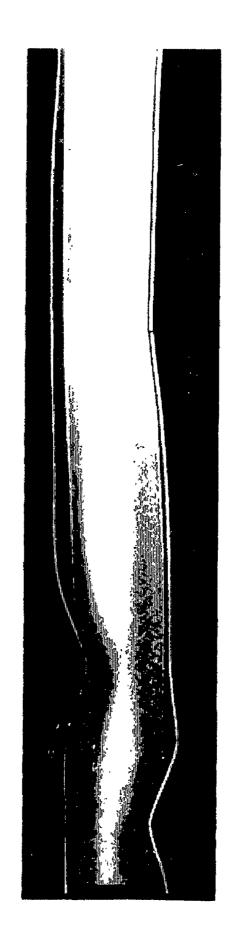
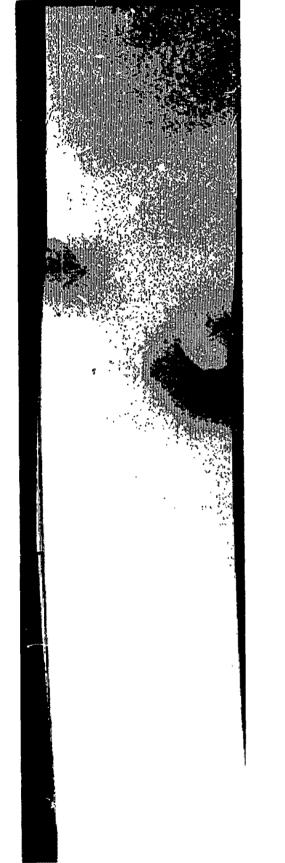
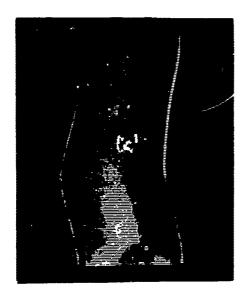
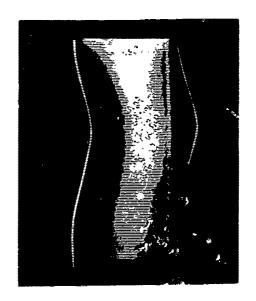
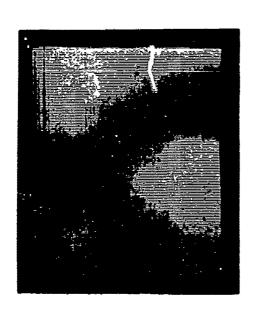


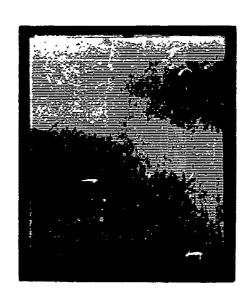
FIGURE 27

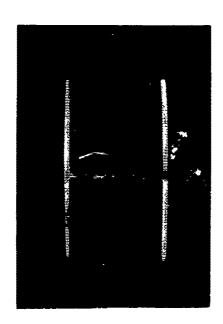
Edge Views of 12-Inch Long Full H-Shaped Compression Test Section From Extrusion No. 37 After Testing at Room Temperature

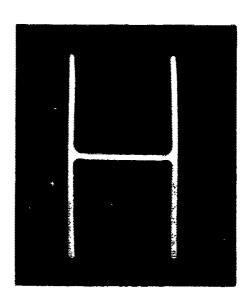
Magnification: 1X


FIGURE 28


Side Views of 12-Inch Long Full H-Shaped Compression Test Section From Extrusion No. 37 After Testing at Room Temperature Magnification: 1X




Edge Views

Side Views

End Views

Two-Inch Long Full H-Shaped Compression Test
Specimen From Extrusion No. 37 After Testing at Room Temperature
Magnification: 1X

Average Vickers Hardness Versus Rolled Size, Percent Reduction Furnace Preheat Temperature for Rolling 1200F Flange Material from Extrusion No. 23

Extrusion Billet Temperature 3200F Reduction Ratio 40.9:1 Stress Relieve 2000F - 1 Hour in Argon Before Rolli

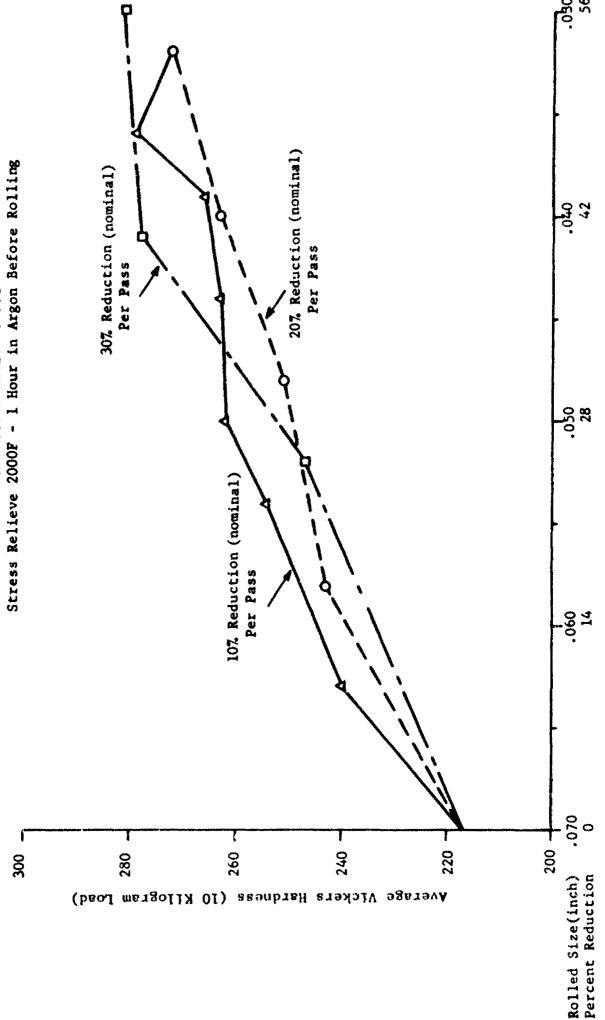
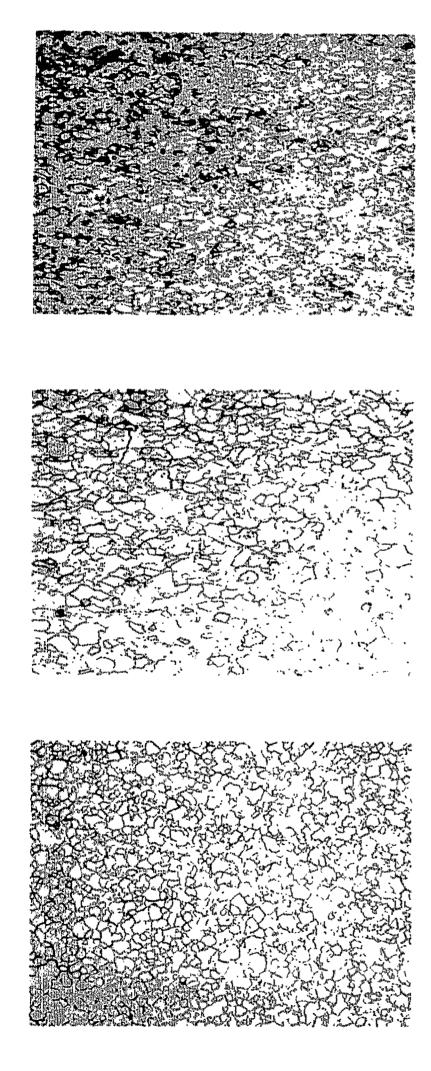
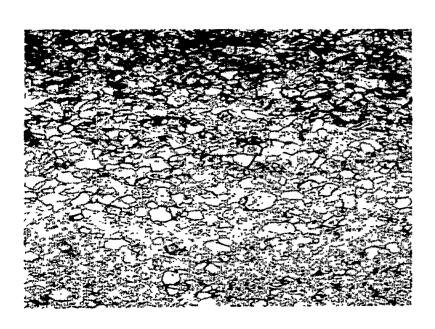
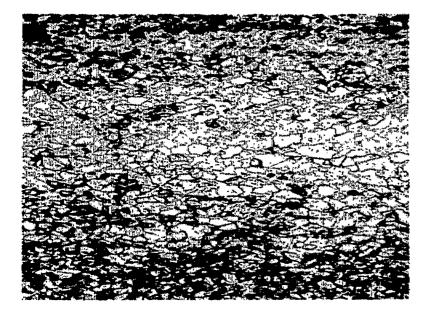



FIGURE 30
Hardness Versus Rolled Size or Percent Reduction for Flange Material From Extrusion No. 23

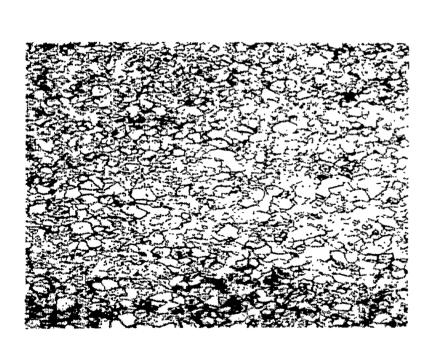

54% Total Reduction 272 Vickers .032-Inch Thickness

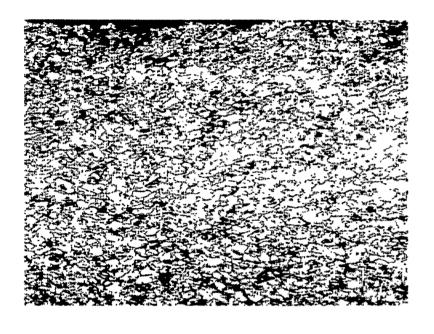

.063-Inch Thickness 10% Total Reduction 240 Vickers

.039-Inch Thickness 44% Total Reduction 266 Vickers Etchant: 10% NaOH - Electrolytic Magnification: 100X

FIGURE 31

With Nominal 10-Percent Reduction Per Pass From Furnace Preheat Temperature of 1200F Transverse Microstructures of Flange Material From Extrusion No. 37 After Rolling


.040-Inch Thickness 43% Total Reduction 261 Vickers


.032-Inch Thickness 54% Total Reduction 274 Vickers

Etchant: 10% NaOH - Electrolytic Magnification: 100X

FIGURE 32

With Nominal 20-Percent Reduction Per Pass From Furnace Preheat Temperature of 1200F Transverse Microstructures of Flange Material from Extrusion No. 37 After Rolling

.041-Inch Thickness 41% Total Reduction 280 Vickers

.030-Inch Thickness 57% Total Reduction 283 Vickers

Etchant: 10% NaOH - Electrolytic Magnification: 100X

FIGURE 33

With Nominal 30-Percent Reduction Per Pass From Furnace Preheat Temperature of 1200F Transverse Microstructures of Flange Material From Extrusion No. 37 After Rolling

In general, substantial increase in hardness and a fairly well worked structure were found after about 40 percent total reduction, particularly with 30 percent nominal reduction per pass. These results suggest that the extrusion of TZM to 0.062-inch thickness with same degree of work hardening followed by warm drawing to 0.040-inch thickness may produce reasonably good engineering properties.

REFERENCES

- 1. Santoli, P. A., "Extruding and Drawing Molybdenum to Complex Thin H-Section," First Interim Technical Engineering Report, RTD Interim Report 8-112 (I), Air Force Contract AF 33(657)-11203, October 1963.
- 2. Santoli, P. A., "Extruding and Drawing Molybdenum to Complex Thin H-Section," Second Interim Technical Engineering Report, RTD Interim Report 8-112 (II), Air Force Contract AF 33(657)-11203, January 1964.
- 3. Santoli, P. A., "Extruding and Drawing Molybdenum to Complex Thin H-Section," Third Interim Technical Engineering Report, RTD Interim Report 8-112 (III), Air Force Contract AF 33(657)-11203, May 1964.
- 4. Moly-Spray-Kote is a dispersion of molybdenum disulfide in a carefully selected blend of solvents and Freon propellants and is supplied by the Alpha Molykote Corporation.
- 5. Molykote G contains MoS_2 , oil and lithium grease and is supplied by the Alpha Molykote Corporation.

APPENDIX I

THE EXTRUSION OF POWDER METALLURGY TZM
TO H-SHAPED CROSS-SECTION

In cooperation with

R. B. Bargainnier
Sylvania Electric Products Inc.
Subsidiary of
General Telephone and Electronics Corporation
Towanda, Pennsylvania

APPENDIX I

THE EXTRUSION OF POWDER METALLURGY TZM TO H-SHAPED CROSS-SECTION

SUMMARY

Four billets of powder metallurgy TZM were purchased from Sylvania Electric Products Inc. Three of these billets were extruded by Allegheny Ludlum to "H" shape of nominal 0.062-inch web thickness from billet temperatures of 2800F, 3000F and 3200F.

Excellent surface quality and dimensional runout characterized each extrusion, regardless of billet temperature. Extruded material was recrystallized even from the low temperature of 2800F and more finely grained than the original sintered billet. Room temperature strength, ductility and hardness were low. Density of as-extruded material was equivalent to arccast TZM.

INTRODUCTION

Powder metallurgy TZM became of interest in this program for its low cost and resistance-to-deformation at billet temperatures. Furthermore, adequate billet sizes of this material were available with the same nominal chemistry as produced by arc-casting. However, it was expected that interstitial elements such as oxygen, hydrogen and nitrogen will be present at higher levels. The effect of higher interstitial levels on the properties of extruded material produced in this program under unusual conditions could not be predicted. Actual extrusions would therefore be necessary in order to make this determination.

Description and evaluation of powder metallurgy TZM were given in previous interim technical engineering reports. (1)(2) Macrostructural examination revealed a uniform structure without porosity, non-metallic inclusions, sonims or chemical segregation. Search traces on a microprobe indicated quite good chemical homogeneity comparable with wrought arc-cast TZM material. Evaluation of extruded material was performed mainly by Sylvania Electric Products Inc. under the direction of Mr. R. B. Bargainnier. The results of this evaluation are given in this Appendix.

DISCUSSION

Extrusion No. 36 was accomplished from 2800F billet temperature to nominal 0.062-inch web thickness, corresponding to a reduction ratio of 45.6:1. This extrusion was evaluated for density, microstructure, hardness, chemistry and tensile properties.

Density

Two sections were obtained from Extrusion No. 36 for density measurements. One section was 4 inches long having a full "H" cross-section and the other was only a 4-inch long flange section. The results are the following:

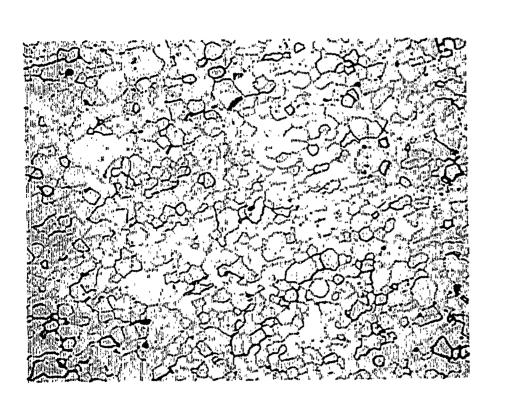
Section	Method	Density (gms/cc)
Full "H"	Mercury displacement Mercury displacement	10.11 10.09
Flange	Benzene displacement	10.17

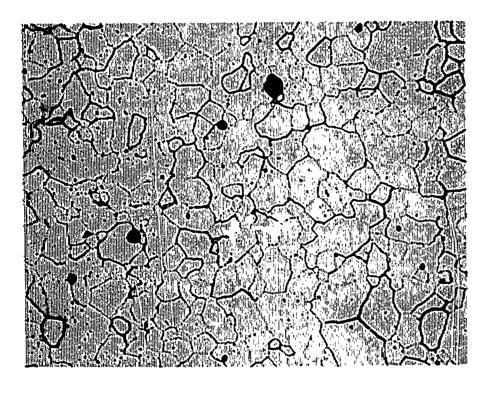
The average determination, therefore, is 10.12 grams per cubic centimeter which is considered to be fully dense.

Microstructure

Transverse microstructures at the back location of Extrusion No. 36 are shown in Figures 34 and 35. A fine recrystallized grain structure was observed having the following ASTM grain size:

Location	ASTM Grain Size
Corner	10
Fillet radius	6-8
Stem center	10

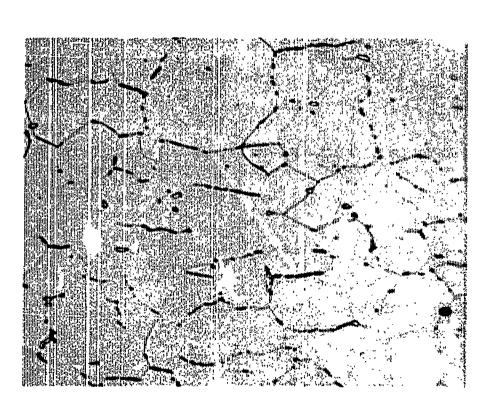

The grain size of the original sintered billet was ASTM 6-7.

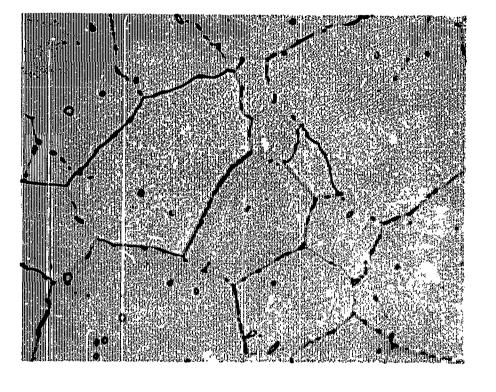

It was also observed that precipitation, and/or inclusions were present at the grain boundaries and within the grains regardless of location. A considerable quantity of second phase (50 microns in diameter) was also found in the original billet structure but the grain boundaries appeared quite free of this second phase. (2) Changes in microstructure after extrusion may be due to one or a combination of the following:

- 1) Changes in solubility of original interstitials which formed a second phase upon heating
- 2) Absorption of interstitials during heating which formed a second phase
- 3) The influence of deformation and temperature during extrusion.

<u>Hardness</u>

Eleven determinations of hardness in DPH values under 10 kilogram load were made on the transverse cross-section at the back location of Extrusion No. 36. The following are the results:


Fillet-Radius


Etchant: 10% NaOH - Electrolytic Magnification: 250%

Corner

PIGURE 34

Transverse Microstructures at the Back Location of Powder Metallurgy T2M H-Snaped Extrusion No. 36 From 2800F Billet Temperature

Corner

Fillet-Radius

Etchant: 10% NaOH - Electrolytic Magnification: 1500X

IGURE 35

Transverse Microstructures at the Back Location of Powder Merallurgy TZM H-Shaped Extrusion No. 36 From 2800F Billet Temperature

Location	<u>DPH</u>
At corners	193
	212
	197
	201
Between corners and fillet radii	201
	199
	203
	210
Fillet radii	182
	182
Stem center	203

The average of these values is 198 DPH. As expected, low hardness was found in the fillet radii.

Chemistry

Carbon analysis of extruded material was found to be 0.026 percent by the conductometric method. The carbon range of the original sintered billets was 0.014 percent to 0.032 percent.

Tensile Properties

Two longitudinal sub-standard tensile specimens of 1/4-inch by 1-inch gage section were prepared from flange material at the back location of Extrusion No. 36. Room temperature tests were made without prior heat treatment. Strain rate in these tests were 0.005-inch per inch per minute in the elastic range up to 0.6 percent off-set and 0.05-inch per inch per minute in the plastic range. The results were:

Ultimate	Yield	
Strength	Strength	%
(ksi)	<u>(ksi)</u>	Elongation
68	63	2
71	64	4

Percent elongation values were considerably below similar values listed in Table 20 for tensile tests of arc-cast TZM Extrusions Nos. 22 and 23.

CONCLUSIONS AND RECOMMENDATIONS

The low ductility of as-extruded powder metallurgy TZM could be related to the presence of second phase observed in the microstructure. A thorough investigation of the relationship with this second phase and chemistry

and/or heating followed by large deformation is not within the scope of this program. It should be remembered that with low ductility material, considerable difficulty could be expected in the mill operations of straightening, pointing and drawing.

Nevertheless, the extrusion to "H" shape of a powder metallurgy billet, already on hand, from a 2600F billet temperature should be done since (1) a more air-free furnace will be made available for this program, and (2) a possibility of improved ductility as the result of lower billet temperature.

On the other hand, considerable activity is underway at Sylvania to lower gas content in billet material. The consideration for the extrusica of powder metallurgy TZM should be reveiwed if and when improved material should become available.

REFERENCES

- Santoli, P. A., "Extruding and Drawing Molybdenum to Complex Thin H-Section," Second Interim Technical Engineering Report, RTD Interim Report 8-112 (II), Air Force Contract AF 33(657)-11203, January 1964.
- 2. Santoli, P. A., "Extruding and Drawing Molybdenum to Complex Thin H-Section," Third Interim Technical Engineering Report, RTD Interim Report 8-112 (III), Air Force Contract AF 33(657)-11203, May 1964.

DISTRIBUTION LIST

	Number of Copies
AFML (MATB)	6
Wright-Patterson Air Force Base, Ohio	•
AFML (MAAM, Miss Parker)	1
Wright-Patterson Air Force Base, Ohio	
Defense Documentation Center (DDC)	30
Cameron Station	
5010 Duke Street	
Alexandria, Virginia	
AFML (MAMP)	1
Wright-Patterson Air Force Base, Ohio	
Bureau of Naval Weapons (CS-23)	1
Nevy Department	
Attn: Mr. S. E. Sanfilipo	
Washington 25, D.C.	
Commanding Officer	1
Watertown Arsenal Laboratories	
Attn: Mr. S. V. Arnold, Associate Director	
Watertown 72, Massachusetts	
U. S. Atomic Energy Commission	1
Technical Information Services Extension	
Attn: Mr. Hugh Voress	
P. O. Box 62	
Oak Ridge, Tennessee	
National Academy of Science	1
Division of Engineering and	
Industrial Resources	
Attn: Mr. E. V. Bennett	
Washington 25, D. C.	
AFSC (SCR-2, Mr. Kniffin)	1
Andrews Air Force Base	
Washington 25, D. C.	
Aluminum Company of America	1
Attn: Mr. Frederick C. Pyne	
1200 Ring Building	
Washington. D. C.	
National Aeronautics & Space Administration	1
Lewis Research Center	
Attn: Mr. George Mandel, Chief, Library	
21000 Brookpark Road	
Cleveland 25, Ohio	

	Number of Copies
Aerojet-General Corporation P. O. Box 296	1
Azusa, California	
Aerojet-General Corporation	1
Solid Rocket Department P. O. Box 1947	
Sacramento, California	
Advanced Technology Laboratories	1
Attn: Mr. W. C. Wolff Contracts Manager	
269 Whisman Road	
Mountain View, California	
Aerospace Industries Association	1
of America, Inc. Attn: Mr. S. D. Daniels	
Director of Technical Services	
1725 De Sales Street, N.W.	
Washington 6, D. C.	
Mr. Hubert J. Altwicker	1
Lebanon, Ohio	
Aluminum Company of America	1
ALCOA Building Attn: Mr. R. W. Andrews	
Pittsburgh, Pennsylvania	
Babcock & Wilcox Company	1
Attn: Mr. James Barrett	
Beaver Falls. Pennsylvania	
Battelle Memorial Institute	1
Metal Working Division Attn: Mr. A. M. Sabroff, Asst. Chief	
505 King Avenue	
Columbus 1, Ohio	
Climax Molybdenum Company	1
14410 Woodrow Wilson Detroit 38, Michigan	
Detroit 30, mitnigan	_
The Boeing Company Attn: Mr. Vince A. Dornes, Manager	1
Manufacturing Development Section	
P. O. Box 3107	
Seattle 24, Washington	
Canton Drop Forging and Manufacturing Company	1
Attn: Mr. Chandis Brauchler 2100 Welitt Avenue	
Canton, Ohio	

	Number of Copies
Defense Metals Information Center	1
Battelle Memorial Institute	
505 King Avenue	
Columbus 1, Ohio	
	1
General Dynamics/Convair	•
Attn: Mr. J. H. Famme Director, Manufacturing Development	
P. O. Box 1950	
San Diego 12, California	
,	
Curcible Steel Company of America	1
Attn: Dr. Walter Finley	
Director of Research	
P. O. Box 88	
Pittsburgh 30, Pennsylvania	
Curtiss-Wright Corporation	1
Metals Processing Division	
Attn: Mr. Reese Williams	
760 Northland Avenue	
Buffalo 15, New York	
	1
Curtiss-Wright Corporation	•
Wright Aeronautical Division Attn: Mr. R. J. Moran	
Manager, Manufacturing Engineering	
Wood-Ridge, New Jersey	
Douglas Aircraft Company, Inc.	1
Attn: Mr. C. B. Perry, C-345	
Plant Engineering Supervisor	
3855 Lakewood Boulevard	
Long Beach 8, California	
Douglas Aircraft Company, Inc.	1
Attn: Mr. L. J. Devlin	
Materials Research & Process	
Santa Monica, California	
	•
Dow Chemical Company	1
Metallurgical Laboratory Attn: Dr. T. E. Leontis	
Assistant to the Director	
Midland, Michigan	
E. I. du Pont de Nemours & Company, Inc.	1
Pigments Department	
Attn: Dr. E. M. Mahla	
Assistant to Technical Manager	
Wilmington 98, Delaware	

	Mumb_r of	Copies
Fansteel Metallurgical Corporation Attn: Mr. A. B. Michael, Director Metallurgical Research 2200 Sheridan Road North Chicago, Illinois	1	
General Electric Company Aircraft Gas Turbine Division Metallurgical Engineering Operations Attn: Mr. G. J. Wile Engineering Manager Large Jet Engine Department, Building 501 Cincinnati 15, Ohio	1	
General Electric Company Lamp Metals & Components Department Attn: Mr. H. T. Green 21800 Tungsten Road Cleveland, Ohio	1	
Grumman Aircraft Engineering Corporation Manufacturing Engineering Attn: Mr. W. H. Hoffman, Vice President Plant 2 Bethpage, Long Island, New York	1	
H. M. Harper Company Attn: Mr. K. G. Hookanson Lehigh Avenue & Oakton Street Horton Grove, Illinois	1	
Harvey Aluminum, Inc. Attn: Mr. G. A. Moudry Technical Director 19200 South Western Avenue Torrance, California	1	
Union Carbide Stellite Company Attn: Mr. F. S. Badger Vice President, Metallurgy Kokomo, Indiana	1	i
Hunter Douglas Corporation 3016 Kansas Avenue Riverside, California	1	
The Martin Company Attn: Mr. L. Laux, Chief Manufacturing Research & Development Balt:more 3, Maryland	1	
Jet Propulsion Laboratory California Institute of Technology Attn: Mr. I. E. Newlan 9800 Oak Grove Drive Pasadens, California	1	

	Number	of	Cupies
The Marquardt Corporation 16555 Saticoy Street P. O. Box 2018 South Annex Van Nuys, California		1	
IIT Research Institute Metals Research Department Attn: Mr. Frank A. Crosley 3350 South Federal Street Chicago 16, Illinois		1	
Jones & Laughlin Steel Corporation Attn: Mr. Robert S. Orr Commercial Research Librarian 3 Gateway Center Pittsburgh 30, Pennsylvania		1	
Kaiser Aluminum & Chemical Corporation 1625 "I" Street, N.W. Washington 6, D.C.		1	
Lear Siegler, Inc. 1700 East Grand Avenue El Segundo, California		1	
Kawecki Chemical Company Attn: Mr. Edwin J. Bielecki Research Manager Boyercown, Pennsylvania		1	
Lockheed-California Company Attn: Mr. Green Manufacturing Methods Division Burbank, California		1	
The Martin Company Denver Division Attn: Mr. 1. P. Breyer Mater_als Engineering Mail No. L-5. P. 0. Box 179 Denver Colorado		1	
McDonn-1. Aircraft Corporation Attn: Mr. C. E. Zoller Lambert-St. Louis Municipal Airport P. O. Box 516 St. Louis 3, Missouri		1	
NORAIR Division Northrop Corporation Attn: Mr. J. A. Van Hamersveld 1001 East Broadway Hawtnoon California		1	

	Number of	Copie
North American Aviation, Inc, Attn: Mr. Walter Rhineschild International Airport Los Angeles 45, California	1	
Nuclear Metals, Inc. Attn: Mr. Klein, Vice-President West Concord, Massachusetts	1	
Republic Aviation Corporation Attn: Mr. A. Kastelowitz Director of Manufacturing Research Farmingdale, Long Island, New York	1	
Oak Ridge National Laboratory Metal and Ceramics Division Attn: Mr. W. C. Thurber P. O. Box X Oak Ridge, Tennessee	1	
Oregon Metallurgical Corporation Arta: Mr. F. H. Vandenburgh Vice President & Sales Manager E. O. Box 484 Albany, Oregon	1	
Republic Steel Corporation Republic Research Center 6801 Breckville Road Cleveland 31, Ohio	1	
Reynolds Metals Company Attn: Mr. Stuart Smith 503 World Center Building Washington 6, D. C.	1	
Rohr Aircraft Corporation Attn: Mr. F. E. Zimmerman Manager, Manufacturing Research P. O. Box 878 Chula Vista, California	1	
Ryan Aeronautical Company Attn: Mr. L. J. Hull Chief Metallurgist Materials and Proces: Laboratory Lindberg Field San Diego 12, California	1	
Sandia Corporation Attn: Mr. E. H. Mebs, Sec. 1621 Sandia Base Albuquerque, New Mexico	1	

	Number of Copies
Sandia Corporation Livermore Laboratory Attn: Mr. M. W. Mote, Jr. P. O. Box 969 Livermore, California	1
Solar Aircraft Company Attn: Mr. F. M. West Chief Librarian 2200 Pacific Avenue San Diego 12, California	1
Stauffer Metals Company Attn: Dr. Jack Hum 1201 South 47th Street Richmond, California	1
Thompson-Ramo-Wooldridge, Inc. Staff Research & Development Chemical & Metallurgical Department Attn: Dr. A. S. Nemy 23555 Euclid Avenue Cleveland 17, Ohio	1
Chance Vought Corporation Vought Aeronautics Division Attn: Mr. G. A. Starr P. O. Box 5907 Dellas, Texas	1
Pratt & Whitney Aircraft Division Attn: Mr. F. J. Fennesey East Hartford, Connecticut	1
United States Steel Corporation Products Development Division 525 William Penn Place Pittsburgh, Pennsylvania	1
Universal-Cyclops Steel Corporation Refractomet Division Attn: Mr. P. C. Rossin, General Manager Bridgeville, Pennsylvania	1
Vanadium Corporation of America Attn: Mr. C. N. Cosman Metallurgical Engineer Graybar Building 420 Lexington Avenue New York 17, New York	
Wah Chang Corporation Attn: Mabel E. Russell, Librarian P. O. Box 366 Albany, Oregon	1

	Number of Copies
Wyman-Gordon Company	į
Attn: Mr. Arnold Rustay	
Technical Director	
Grafton Plant	
Worcester Street .	
North Grafton, Massachusetts	
Westinghouse Astronuclear Laboratory	1
Attn: Mr. R. J. Begley	
Materials Department	
P. O. Box 10864	
Pittsburgh 36, Pennsylvania	
Mr. Donald Warren	1
E. I. du Pont de Nemours & Company, Inc.	
Engineering Research Laboratory	
Wilmington 98, Delaware	
Rocketdyne	1
Attn: Mr. W. T. Chandler	
Principal Scientist, Metallurgy	
Canoga Park, California	
General Electric Company	1
FPD Technical Information Center	
Building 100	
Cincinnati 15, Ohio	
Feller Engineering Company	1
Attn: Hr. R. C. Zeile	
Empire Building	
Pittsburgh, Pennsylvania	
FTD (TD-E2b)	1
Wright-Fatterson Air Force Base, Ohio	
_	•
Erie Foundry Company	1
Attn: Mr. J. E. Wilson	
General Sales Manager	
Erie 6, Pennsylvania	
ASD (ASRCH-31)	1
Wright-Patterson Air Force Base, Ohio	
Wolverine Tube	1
Division of Calumet & Hecla, Inc.	•
Attn: Mr. F. C. Eddens	
Manager, Special Metals	
Research & Development Division	
17200 Southfield Road	
Allen Park, Michigan	
· · , · ·	

	Number of Copies
Westinghouse Electric Corporation Attn: Mr. F. L. Orrell	1
Section Manager, Development Contracts P. O. Box 128	
Blairsville, Pennsylvania	
McDonnell Aircraft Corporation	1
Attn: Mr. H. J. Siegel	
Lambert-St. Louis Municipal Airport St. Louis 3, Missouri	
Union Carbide Stellite Company	1
Attn: Mr. G. Fritzlen Kokomo, Indiana	
Alleghany Ludlum Steel Corporation	1
Waterviist Works Attn: Mr. J. Rice	
Watervliet, New York	
Scientific and Technical Information Facility	I
Attn: NASA Representative (SAK/DL)	
P. C. Box 5700	
Bethesda, Maryland 20014	
AVCO Corporation	1
Research and Advanced Development Division	
Attn: Mr. John V. Erickson, Manager	
201 Lowell Street	
Contract & Administrative Services	
Wilmington, Massachusetts	
Zirconium Corporation of kt. ica	1
Attn: Virginia M. Brandt, Librarian	
P. O. E. x 9583	
Solon, Ohio 44139	

Allegheny Ludlum Steel Corporation		UNCLASSIFIED	Allegheny Ludlum Steel Corporation		UNCLASSIFIED
Research Center					
Brackenridge, Pennsylvania		, IZM	Brackenridge, Pennsylvania	 i	Wrought, TZM
EXIMULING AND DEAMING FIGURALING TO COMPLEX THIN H-SECTION		Billet Stock	TO COMPLEX THIN H-SECTION		EJILET STOCK
August 1964	2	Pressed and		2.	Pressed and
9 pp., 35 illus, 23 tables, references	· !	W21 P	9 pp., 35 illus, 23 tables, references		Sintered TZM
(Contract AP33(657)-11203)		tock	(Contract AP33(657)-11203)		Billet Stock
Unclassified Report	ω.	Extrusion		ä	Extrusion
Sixteen H-shaped extrusions (14 TZM) 	Tooling	Sixteen H-shaped extrusions (14 TZM		Toling
			and 2 stainless) were made with new		
support tooling. No failure or distor-	4.	TZM Extrusions	<u> </u>	4.	TZM Extrusions
tion occurred in the tooling, regard-				,	
less of liner pressure up to 237,000	٠,	ton of		'n	Evaluation of
psi. Reasonable quality and dimension-		TZM "H" Shapes	psi. Reasonable quality and dimension-		TZM "IP" Shapes
al runout were found in TZM extrusions			al runout were found in TZM extrusions		Maria mer
Allegheny Ludlum Steel Corporation		UNCLASSIFIED	Allegheny Ludlum Steel Corporation		UNCLASSIFIED
Research Center			Research Center		
Brackenridge, Pennsylvaria Extribing And DRAWING MOLYBDENUM	÷	Wrought TZM	Brackenridge, Pennsylvania EXTRUDING AND DRAWING MOLYBDENUM	نہ	Wrought T2M
TO COMPLEX THIN R-COCTION		DITTEL SCOOK	TO COMPLEX THIN H-SECTION		
August 1964	3	Pressed and	1961	5	Pressed and
9 pp., 35 illus, 23 tables, references		d TZM	9 pp., 35 illus, 23 tables, references		Sintered TZM
(Contract AF33(657)~11203)		Bille. Stock	(Con		Billet Stock
Unclassified Report	•	1	Unclassified Report	r	1
Sixteen H-shaped extrusions (14 TZM	'n	Extrusion Toolar		ำ	Tooling
and 2 stainless) were made with new		Sur 100 s	-		9
support tooling. No failure or distor-	4.	TZM Extrusions	support tooling. No failure or distor-	4.	TZM Extrusions
tion occurred in the tooling, regard-			less of liner pressure up to 237.000	1	
hes of that present of the solution	'n	uatí	psi. Reasonable quality and dimension-	Å	Evaluation of
al runout were found in TZM extrusions		TZM "H" Shapes	al runout were found in TZM extrusions		TZM "H" Shapes
Amount 100 miles and 100 miles		ļ			

at a reduction ratio of 43:1 from	UNCLASSIFIED	at a reduction ratio of 43:1 from	UNCLASSIFIED
3200F billet temperature with the use of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.	I. Santoli, P. A.	3200F billet temperature with the use of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.	I. Santoli, P. A.
The use of pressed and sintered solid zirconia nibs was demonstrated successfully for the extrusion of "H" shapes.	II. Contract AF33(657)-1120	Contract The use of pressed and sintered solid AF33(657)-11208 zirconia nibs was demonstrated successfully for the extrusion of "H" shapes.	II. Contract . AF33(657)-11208
Dimensional runout for both stainless and TZM was remarkably good and liner	III. Extruding and Drawing Molyb-		III. Extruding and Drawing Molyb- denum to
pressures were lower than that required for extrusions with segmented, coated dies.	בב ומ	for extrusions with segmented, coated dies.	
at a reduction ratio of 43:1 from	UNCLASSIFIED	at a reduction ratio of 43:1 from	UNCLASSIFIED
		3200F billet temperature with the use	
of flame-sprayed zirconia dies. Simi-	I. Santoli, P.A.	of flame-sprayed zirconia dies. Similar extrusions from 3350F were poor.	I. Santoli, P.A.
Tak extrustation and a second a	II. Contract		II. Contract AF33(657)11203
Ine use of pressed and sincered solis	-0177 / 100) 65 74		
fully for the extrusion of "H" shapes.	III. Extruding and	fully for the extrusion of "H" shapes.	III. Extruding and Drawing Molvb-
Dimensional runout for both stainless	denum to		denum to
pressures were lower than that required	Comple	pressures were lower than that required	
for extrusions with segmented, coated	H-Section	for extrusions with segmented, coated	H-Section
no.			